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THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

From drug discovery through FDA approval, developing a new medicine takes at least 10 years on average and costs an average
of $2.6 billion.” Less than 12% of the candidate medicines that make it into Phase | clinical trials will be approved by the FDA.
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Key: IND: Investigational New Drug Application, NDA: New Drug Application, BLA: Biologics License Application

* The average R&D cost required to bring a new, FDA-approved medicine to patients is estimated to be $2.6 billion over the past decade (in 2013 dollars), including the cost of the many
potential medicines that do not make it through to FDA approval.

Source: PhRMA adaptation based on Tufts Center for the Study of Drug Development (CSDD) Briefing: “Cost of Developing a New Drug,” Nov. 2014. Tufts CSDD & School of Medicine., and US
FDA Infographic, “Drug Approval Process,” http://www.fda.gov/downloads/Drugs/ResourcesForYou/Consumers/UCM284393.pdf (accessed Jan. 20, 2015).




The curse of attrition...
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...mainly due to safety and efficacy issues

Causes of failure between Phase 2 and
submission in 2011 and 2012

Arrowsmith & Miller 2013 w



Chemoinformatics

N

e Goal: estimate interaction
between compounds and @Y . T
protein targets e

e Activity measured by high-
throughput screening

e Activity depends on
match between shape
of compound and

shape of protein ro

e 3D modeling is challenging  [NLELES

Compound
(ex: Viagra)

Enzyme




Drug—target activities

« |C50 — amount of compound

needed for half inhibition Ca
pIC50 = -log10(IC50) e
« EC50 - amount of compound [~ _— 100%
needed for half effect g 2w \
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High-throughput screening

Hit discovery in early drug discovery
« Identify compounds active against
a protein drug target of interest

Activity measured by
high-throughput screening
Activity = “scarce” data

Comp, 7 2

Comp, 8

Comp, 3

IC50

1-2% fill rate

Millions of compounds

Comp, 9

Thousands of targets



Molecular fingerprints

» High-dimensional fingerprints of 2D compound structures
» Sparse vectors

Key-based fingerprints Circular fingerprints
FP2 & MACCS MNA & MPD & ECFP

A bit string represents the
presence or absence of

particular substructures atom and its neighbors

e e

each fingerprint
represents a central



Quantitative Structure—Activity Relationship (QSAR)

» Finds optimal model a based on predictive features
» 1C80(x) = X4+ aX, + ... + OpXg
L P
» Minimize error loss -
> PLS, ridge regression 00100010 |Comp, 2

» Good performance if 01000001 |Comp,
enough training examples

» Does not share 00101101 |Comp,
information across tasks!

00101101 | Comp, 9




Multitask learning

* From fingerprints and
available activities,
predict missing activities

 Approaches

1. Supervised learning per

target (QSAR)

2. Matrix factorization
- Netflix style

3. MF + supervised
- Macau

00100010
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Features
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The Netflix Challenge

» (Goal: predict user movie ratings

* 440K users, 18K movies 18K movies
* 100 million ratings 11212121212
« 1% fill rate o 222211

« =» Predict 99% missing

« How can this work?

440K users




» Low-rank approximation of full matrix
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Factor analysis
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Factor analysis

» Individual response (= row) modeled as individual mixture
(= loading) of a small number of latent responses (= factor)
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Factors
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Alternating Least Squares
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Alternating Least Squares

» If Vwere known, U could be found by linear regression
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Alternating Least Squares

» If U were known, J could also be found by linear regression

Y U |4

Factors

Loadings w



Scarce matrix factorization

» Only observed values are used in regressions

Y U Vv

Factors

IIllIlHW (Y - UV)H

Loadings w




» Once factors are obtained, other entries can be predicted

-

Factors

Loadings w



> Given scarce data, is a single solution (U", V") meaningful?

-

Factors

Loadings w



Bayesian modeling

» Given uncertainty from scarce data, Bayesian inference is
desirable

+Instead of (U",V")= nl},ivn”W (Y -UV),
we want to consider the Bayesian posterior distribution
p(U, V1Y)
« Posterior predictive distribution
p(Y1Y)

is more informative than any optimal estimator

e e



Ordinary least squares

» ALS involves successive regressions solved by OLS

Y. U. vV

l. l.

Factors

—
—
Loadings
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Ordinary least squares

» Model
y = X3 +e¢,
(y1\ (X;r\ (1711 $1p\ (}5’1\ (51\
2 x’{ Toy -+ Tgp 2 =)
y = 2 X = : - : N K B= 2 R :
A U A U AU Y A CY

» Solution
18 = (X'X) "Xy
» Setup = transposed of previous notation

» |f Gaussian noise, then OLS is max. likelihood estimate
c| X ~N(0,06°L,).

(¥1X, B, 0%) o (02) 2 :

oly e (~ 352y~ XB) (v - X8 w




Block Gibbs sampler

» The Gibbs sampler is a Markov Chain Monte Carlo method

» MCMC for model inference generates samples from
complex posterior distributions of model parameters by
iteratively sampling from simpler distributions

» The following scheme is a block Gibbs sampler
U™ ~pUIV?)Y)
V(i+1) ~ p(V | U(i+1),Y)

» Under mild conditions of ergodicity, after burn-in, the
samples will be dependently drawn from joint distribution

For i sufficiently large, (U, V")~ p(U,V 1Y)
» Similar to alternating least squares, but global optimization

e e



Markov Chain Monte Carlo

» We do not get the posterior distribution analytically,
only samples from it

» Samples are sufficient to characterize posterior distribution

» e.g., average solutions to get posterior mean estimate

» e.g., marginal variance of individual predictions to characterize
uncertainty

e e



Bayesian linear regression

» The distribution of §in function of the data X and y can be
modeled as a multivariate Gaussian distribution over

» Model
y = X8 +e¢, £ | X ~N(0,0°L,).
PUSIX. B.0%) x (0%) 2 exp (51l — XB) Ty~ XB) ).

» Assume a Gaussian prior for f and an inverse gamma

prior for p
2

p(B,0%) = p(a®)p(Blo®),  p(0®) ox (07)~0/% exp (— t;%) -

-1

PUBI0") ox (0%) M2 exp (558 — o) Aol — ) ) = A (o *ATY).

e e



Bayesian linear regression

» Then the posterior distribution of g is also a Gaussian
distribution by application of Bayes’ rule

p(B.0°ly,X) o p(Blo”,y,X)p(0’|y, X),
p(Blo*y,X) = N (p,,0°A}7)

A, =(X"X+ Ay

o = (XX + Ap) ™ (Aopo + Xy),

o(o?ly. X). = Inv-Gamma (a,,b,)

n 1
=0+ 5, ba=bo+5(¥ Y+ o Moo — pnAnpty).

» If A,=0 and u,=0, then solution for wu, is identical to OLS!
» Average solution u, is similar to ridge regression solution
» Precision matrix A, characterizes variance of solution

e e




GAMBLR trick

» Executing the Gibbs sampler requires sampling repeatedly
from posterior Gaussian distributions (which change every
time U and V' change)

» Sampling from multivariate Gaussian distribution

e~ N(0,I). If A such that Z=AA',thenz=u+Ae~N(u,)

» For Bayesian linear regression

X
L,

X:

= with A, = L,L,'

Lyu,

u,=(XX')" Xy and A, = XX'
It can be shown that z = ()?X')_l X(y+0.£)~N(u,o’A")
» This has the same form as OLS!

e e



GAMBLR trick

» This means that we can sample from the posterior
Gaussian distribution by solving a linear regression on the
original data plus injected noise!

» Running the Gibbs sampler then only amounts to solving a
sequence of linear regressions with variable noise injection!

» Linear regression is one of the best studied problems in
numerical analysis

» Fast algorithms
» Scalable code

» One multivariate regression per row or column of Y at each iteration
step, hence easy parallelization

e e



Matrix factorization

* One of the best approaches for Netflix challenge
* Prediction of ratings for viewer-movie pairs

 Does not use features, only matrix values

 Two popular versions
« Probabilistic Matrix Factorization (PMF) = Maximum Likelihood
« Bayesian PMF = Bayesian inference

e e



Netflix comparison (PMF vs. BPMF)

» Data: 100M ratings from 480K users, 18K movies
» BPMF has advantage for users with few ratings

0.97-|

1.2}
0,96} |

095t |

RMS
B

Logistic PMF |
Bayesian PMF 0.8}

0.9[
0 10 20 30 40 50 60 1-5 6-10 -20 40 -80 -160 320 640,641
Epochs Number of Observed Ratings
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Motivation for Bayesian PMF

 PMF gives point
estimates
* Problematic for
compounds that have
only few samples
« We are interested in
uncertainty of estimates

7500 -

5000 -

#compounds

2500 -

I |
0 5 10 15 20
Number of samples per compound

Example IC50 data set from
CHEMBL with 15K compounds

e e



Bayesian PMF

Ko, Wy Ko, Wy

i 4 o
—@)
Mg n=1..N \4 / m=1,..M \Po

a
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Gibbs sampling

* lteratively samples each parameter

« ODbtains posterior samples of the model
e.g., sample 200 models after burn-in

* Using the samples one can also measure uncertainty

« Related to Alternating Least Squares
* Blocked Gibbs sampler with large blocks, good sampling

behavior

e e



ChEMBL: PMF vs. Bayesian PMF

« ChEMBL public data set of assay activities

« Classified IC50 Test classification error
15,118 compounds
« 344 proteins
59,451 values 0.26-
» Discretization at 200nM
o 20% test

« BPMF outperforms PMF |
 Does not use features,
only matrix values

Method
— BPMF
— PMF

isclassification
(=]
no
~

M

0.22-

0.20-
| | | |
5 10 15 20
Number of latent dimensions
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ChEMBL: BPMF vs. ridge regression

15K compounds
344 protein
200 nM threshold

084-— 1 090 -
0
. N mQ ot 20% for test set
g i g ~+ BPMF
§0.80- - €
< . g0gs- ! «RageRegr Vary number of
< dimensions
0.76- 1
0.80 -
5 10 15 2 5 10 15 2
Number of latent dimensions Number of latent dimensions

Matrix factorization not as good as QSAR, but does capture information.

e e



BPMF (relation view)

Comp.

Protein

IC50

Model
2 entities, 1 relation

Latent variables (green) are
learned from the IC50 data.



Macau

Fingerprints

1ﬁcomp

Comp.

Latent
U

Protein

Latent
V

Can we get
the best of both worlds?

Model
2 entities, 1 relation
+ features for compounds

| atent variables are learned
together with ..,

e e



vy, U

Using side information '
KO,W0 A KO’WO
e Weincorporate side I
information to prior mean /3 xi

of latent vectors

u; ~ N (uv + B xi, Av) @—»@ W @

o X is feature vector / (= 1M \

S /3|s linkmatrix Mg 77 W """ Mg
e [andA (precision) are also G

learned

a
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Results on ChEMBL

0.88 -

0.84 -

Accuracy
o
o
o
1

0.76 -

oy

0.90 -

1

1

Area under ROC

0.80 -

| | | | | | |
5 10 15 20 5 10 15
Number of latent dimensions Number of latent dimensions

Compound features improve performance
Multitask modeling improves performance

Method
-~ BPMF
-o- Macau

-+~ Ridge Regr

15K compounds
344 protein
200 nM threshold

20% for test set




Sampling the link matrix (1)

e [isFx D matrix, where

o F (the number of features) can be bigger than 100k or 1M.
o Disthe number of latent dimensions

e Conditional posteriorof Sis

p(B) ox exp( tr{( (U—-Xp)' (U-Xp)+ 88" )Au})
v )

fitting error prior  scaling

e The chosen prior allowed us to factorize out Ay

e e



Noise injection sampler

e Sample of f can be generated by solving linear system:

K=X"X+
FxF D right-hand sides
A A

KB =X"(U+E;)+/AE;

T T

Noise Noise

e EveryrowinE, andE, issampled from AN (O, A1)

e e



Industrial scaling (J&J data)

» ~2M compounds, ~1K targets, tens of millions of activities
« Compute nodes: dual Xeon E5-2699 v3

* Fingerprint 1: 6,000 features
» Latent dimension = 30

» Direct solver on single node

» 40s per Gibbs sampling pass
> 1,000 iterations (800 burn-in) = %2 day

« Fingerprint 2: 4,000,000 features
» Sparsity of X: 0.002%
» Latent dimension = 30

» lterative solver on 15 nodes
» 600s per Gibbs sampling pass
> 1,000 iterations (800 burn-in) = 1 week

e e



Single-task vs. multitask learning

» SVM using scikit-learn
» Separate classifier for every assay
» Hyperparameter by nested CV

» For each assay separately

» Linear kernel
» (Gaussian kernel has equivalent performance but does not scale

» Macau classification using TensorFlow
» Non-Bayesian approach (optimization)
» Multi-task learning
» Hidden representation size: 1,000
» Model parameters chosen by ChEMBL experiments

e e



Nested clustered crossvalidation

» Chemical series effect
» All members of a series ’

should be either in training " Series,, .. .

or test set Fold1 <
» Clustering Serl'es1N .
» Tanimoto > 0.7 -
> Nested cross-validation Fold2 {4 L
for hyperparameter .
tuning -

Fold3 -




AUC per assay

» Mean over assays
» Macau: 0.886
» SVM: 0.840

» From 712 assay
» Macau wins 382
» SVM wins 0
> Ties 330
» Using p <0.01

Macau [AUC-ROC]

0.8 -

0.7 -

0.6 1

0.5 1

o - e Macau outperforms
i T . SVM outperforms
0.5 0.6 0.7 0.8 0.9 1.0

SVM [AUC-ROC]




Variational Bayes

Vi By
» Gibbs sampling = “old” |
» Variational Bayes popular ~ «,w, [ A A
> Hierarchical blindness in VB \
> Ignored covariance g%
between £ and latents u \ /

» Poor variance estimates @ W @
. . —
* U, covariance increases @ 0
if side information / N \ /=1 \




Empirical comparison: ChEMBL

» 15k compounds

» 346 proteins

» ~60k activity
measurements

> plC50
» 20% test set

»Sparse high-
dimensional side
information (#feat is
~100kK)

»Macau drastically
outperforms VBMFSI

METHOD RMSE NEGLL
BMF(MCMC)  0.8948 (0.0072) 1.2252(0.0078)
BMF(VB) 1.0045 (0.0057)  1.3933 (0.0048)
LIBFM 0.6510 (0.0072)

VBMESI-CA  0.8024 (0.0111) 1.1678 (0.0141)
MAcAU (OURS)  0.6122 (0.0053)  0.8756 (0.0050)
VAFFL (ours)  0.6829 (0.0080) 1.0091 (0.0110)

e e



Repurposing High-Content Imaging data

e e



Classical high-content imaging

Cell images

,_

-8 E. CellProfiler Extract single

image feature
m

Biological
knowledge
Select a

feature
_— / .
., / :" “‘.' :\*

In vitro
testing %

LgernFE iz




Repurposing imaging assays

» High-throughput imaging (= high-content screening)
» 500K compounds, 600 drug targets, 10M activities (30% fill rate)

» Glucocorticoid receptor assay phenotypic screen
* Feature extraction from images with CellProfiler

Cell images Image- based ﬂngerprlnts (X)

Predicted

activities
Machine “’ N N
learning .,: Keep good In vitro 4
(X—»Y) - models ’ testing B

§

rfparnifing

; ¥ X
E—— —_— ——
Activity data (Y) " -
l ll Wll . .
uf af
W‘.D . Testset: 060.9 0.9 08 0.71.0

~

ol E H D Predictivity (AUC) > 0.90 @

‘ Simm et al., Repurposing High-Throughput Image Assays
WE . Enables Biological Activity Prediction for Drug Discovery,
Cell Chemical Biology (2018)

Figure 2. Strategy to Repurpose Imaging Screens to Efficiently Predict Biological Activity

Features extracted from images of cells are used by machine-learning methods to model all available activity data from previously performed assays. Assays with
good predictivity on the test data are then selected for testing a relatively small number of predicted-active compounds, chosen from a large set of compounds
profiled in the imaging assay.



Application

» Oncology drug discovery project
* Active project
* Initial screen = 0.725% hit rate (submicromolar)
* Kinase target
 No known direct relation to glucocorticoid receptor
 Rank unscreened compounds with imaging data

e Test top 342 compounds
* 141 submicromolar hits (41% hit rate)
» 60x enrichment

e e



Application

» Central nervous system project
« Active project
* Initial screen = 0.088% hit rate
 Enzyme target
 No known direct relation to glucocorticoid receptor
« Rank unscreened compounds with imaging data
« Some additional ADME filtering

« Select 141 compounds
« 37 submicromolar hits (22.7% hit rate)
« x250 enrichment

e e



Imaging data improves chemical diversity

» Similar or better hit rates using structure fingerprints
» BUT high chemical diversity (biologically driven vs.

chemically driven)

A |
10-

Compound set
|Hits from initial screen
Hits from biological expansion

. |Random compounds

Density

Ve ~/
./ \|A\/

1.00

0.75 1.00 0.00 025 0.50 075
Tanimoto similarity to nearest hit in initial screen

0.00 0.25 0.50
Tanimoto similarity to nearest hit in initial screen
Oncology CNS w




Imaging assays for drug discovery

» 500K compounds, 600 targets, 10M activities (30% fill rate)
» Glucocorticoid receptor assay phenotypic screen

» Evaluate predictivity using clustered cross-validation

» Macau predictive for 37% of assays (CV AUC>0.7), highly
predictive for 5% of assays (CV AUC>0.9)

Assays not related to original screen!

» Here: single imaging assay
» Future: build systematic library of imaging assays

e e



Macau

» (Generic package
» Open source

» OpenMP/C++ with Python wrapper library
« https://qithub.com/jaak-s/macau

« Factorization with and without side information
« Real valued and binary matrices (normal and probit noise)

« Supports tensors (alpha)
« Univariate and multivariate Gibbs sampler

e e



Deep Macau

» Combine deep learning and matrix factorization

Deep learning allows to capture nonlinear effects
Matrix factorization allows item level reasoning

Instead of only transforming features into prediction, learn a latent
representation of each entity

ID:1234 ID:5478




Privacy-Preserving Machine Learning

| e



Privacy-preserving modeling

» Partners want to model data jointly across multiple
partners

» The partners DO NOT want to disclose the original data to
each other

» The partners are willing to disclose some derived data

» How can you model data jointly without disclosing it?!?
» Privacy-preserving modeling

e e



Privacy-preserving sum

?2? - 7?7 -7 -7 —> SUM?




Privacy-preserving sum

SUM(S1:S4)

+SUM(RO:R4)

—Lo SUM(S1:S4)

©




Privacy-preserving sum

» What we are calculating

S1 + S2 + S3 + 5S4




Single-party Macau

Partner 1
V1T
| L]
X
ecip — U, ™ 1
features 181 —




Independent parties

Partner 1 Partner 2
V1T V2T
| L]
X
ecip — U, ™ 1 ]
features 181

features 'B 2

L
X
] eclp — U, > [
—




Privacy-preserving broker

Shared

Broker

X
ECFP
features

66

Private for Private for Private for
Partner 1 Partner 2 Partner 3
V1T VzT VsT
] L]
[]
L L[
1 [ ]
I I L]
1 .

Initialization
Broker receives X
from each partner
and aligns them

Iteration

1. Partners privately
update V

2. Partners send
contributions for U
to broker

3. Broker computes
and shares U

4. Broker updates 8




MachinE Learning Ledger Orchestration
for Drug DiscoverY

—— PHARMA PARTNERS—
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Union’s Horizon 2020 research and innovation programme and EFPIA
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Conclusions

« Fully Bayesian matrix factorization with side information
« Multitask learning with tasks tied by matrix factorization

« Scalable, parallelizable full MCMC

« Particularly attractive when
* Modeling prediction uncertainty
e Scarce target matrix
« Sparse feature matrix

« State-of-the-art performance on chemogenomic tasks

e e
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