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AUC Maximization in Bayesian Hierarchical Models

Mehmet Gonen!

Abstract. The area under the curve (AUC) measures such as the
area under the receiver operating characteristics curve (AUROC) and
the area under the precision-recall curve (AUPR) are known to be
more appropriate than the error rate, especially, for imbalanced data
sets. There are several algorithms to optimize AUC measures instead
of minimizing the error rate. However, this idea has not been fully
exploited in Bayesian hierarchical models owing to the difficulties in
inference. Here, we formulate a general Bayesian inference frame-
work, called Bayesian AUC Maximization (BAM), to integrate AUC
maximization into Bayesian hierarchical models by borrowing the
pairwise and listwise ranking ideas from the information retrieval lit-
erature. To showcase our BAM framework, we develop two Bayesian
linear classifier variants for two ranking approaches and derive their
variational inference procedures. We perform validation experiments
on four biomedical data sets to demonstrate the better predictive per-
formance of our framework over its error-minimizing counterpart in
terms of average AUROC and AUPR values.

1 INTRODUCTION

In binary classification problems, we are given a sample of N inde-
pendent and identically distributed training instances X = {x, €
A}, and their class labels y = {y, € {—1,+1}}0_;. We
then use X and y to learn usually a parametric function that can
be used to predict the class labels of unseen test instances. Let
f = {fn € R}_, be the output values of this parametric function
when evaluated on the training instances. The output values can be,
for example, posterior probabilities assigned to one of the classes in
neural networks or discriminant outputs in support vector machines.
During training, the classification parameters used to generate the
output values are selected by optimizing an objective function, which
usually contains a loss function defined on f and y such as the hinge
loss and squared error loss to minimize the expected error rate on test
instances.

The error rate is by far the most commonly used performance
measure to compare different classification models. However, the
area under the curve (AUC) measures such as the area under the
receiver operating characteristics curve (AUROC) and the area un-
der the precision-recall curve (AUPR) are better suited to imbal-
anced binary classification problems. As noted by many earlier stud-
ies [5,9,11,21], minimizing the error rate may not lead to better AUC
measures. To the best of our knowledge, there is not a full-Bayesian
algorithm to optimize AUC measures owing to the difficulties in in-
ference.

In this work, we study AUC maximization for Bayesian hier-
archical models and propose a novel inference framework, called
Bayesian AUC Maximization (BAM), to optimize AUC measures
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with a full-Bayesian treatment. To this aim, we borrow the pair-
wise and listwise ranking ideas from the information retrieval lit-
erature and show how they can help us maximize AUROC values
in Bayesian hierarchical models. We demonstrate the better predic-
tive performance of our framework on four biomedical data sets by
comparing it to an error-minimizing baseline algorithm.

2 MODELING AUC MAXIMIZATION USING
CATEGORICAL DISTRIBUTIONS

To be able to model AUC maximization in Bayesian hierarchical
models, we first write AUROC as a function of the output values
and then show two possible strategies to represent this function us-
ing random variables from the categorical distributions (also known
as generalized Bernoulli distribution or multinomial distribution with
a single trial).

It is very well-known that AUROC is equal to the value of the
Wilcoxon-Mann-Whitney statistic in the discrete case [7]:

AUROC(f) = W 5SS 60 > fo),

neP oeEN

where P = {n: y, = +1}, N = {n: y, = —1}, | - | gives the
cardinality of the input set, and d(-) represents the Kronecker delta
function that returns 1 if its argument is true and O otherwise.

The first strategy to represent AUROC using the categorical distri-
butions is similar to the pairwise ranking models in the information
retrieval literature, which force the output value of a relevant docu-
ment to be larger than that of an irrelevant document for all relevant—
irrelevant document pairs [3, 6, 10]. The Wilcoxon-Mann-Whitney
statistic considers all pairs defined between the positive and negative
instances, which we can represent using auxiliary random variables
drawn from categorical distributions with two possible outcomes and
their respective probabilities calculated using the softmax function:

[eXp(fn) ‘3Xp(f0)]>7 (1

Zn,ol fny fo ~ C (Z”’O; {n.o}, exp(fn) + exp(fo)

where (n,0) € P x A and C(-; E, ) denotes the categorical dis-
tribution with the event set E and the event probabilities 7. Figure 1
illustrates the pairwise ranking idea applied on a toy data set with two
positive and two negative instances, which requires four categorical
random variables to be defined. To maximize AUROC during train-
ing, we can treat z, , variables as observed variables and set each of
them to the index of the positive instance involved, i.e., zp,o = n.
The pairwise ranking strategy requires |P| x [N categorical ran-
dom variables to be added, whereas we can reduce this number to
min(|P|, ]N|) using the listwise ranking models in the information
retrieval literature, which force the output value of a relevant doc-
ument to be larger than those of all irrelevant documents at once
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Pairwise ranking applied to modeling AUC maximization using categorical distributions.
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Figure 2. Listwise ranking applied to modeling AUC maximization using categorical distributions.

[4, 13,20]. Without loss of generality, we assume that |P| < |N|
in the following. For each positive instance, we can add an auxiliary
random variable drawn from a categorical distribution with (JNV|+1)
possible outcomes and their respective probabilities calculated using
the softmax function:

exp(fo)
> exp(fp) '

PEWS 0EW,,

Zn|{fo}o€Wn ~C Zn; Wn» ?2)

where n € P and W,, = {n} U N. Figure 2 illustrates the listwise
ranking idea applied on a toy data set with two positive and two neg-
ative instances, which requires two categorical random variables to
be defined. To maximize AUROC during training, we can treat z,
variables as observed variables and set each of them to the index of
the positive instance involved, i.e., z, = n. Reducing the number
of categorical random variables from |P| x [N to min(|P|, |N])
would help us make our inference procedures more effective as de-
tailed later.

3 BAYESIAN AUC MAXIMIZATION

To showcase our framework, without loss of generality, we use
Bayesian probit regression model as our baseline method [1]. We
first describe this model briefly and then give detailed derivations for
our two AUC-maximizing variants of this model.

3.1 Bayesian Probit Regression as Baseline Linear
Classifier

The distributional assumptions of Bayesian probit regression model
are defined as

¥~ G(y; ay, By),

zp; 1B, C,D
»i {8, C.DJ, exp(fs) + exp(fc) + exp(fp)
bly ~ N(b;0,771),
MNa ~ g('f]d§ arpﬂn) Vd,
walna ~ N(wa; 0,05 ") vd,

fulb,w, @r NN(fn;wTar:n +b,1)

vn,
Vn, (3)

where {f,}A_, is the set of output values introduced to make the
inference procedures efficient [1]. The nonnegative margin parame-
ter v is introduced to resolve the scaling ambiguity and to place a
low-density region between two classes, similar to the margin idea in
support vector machines. N'(+; u, 32) represents the normal distribu-
tion with the mean vector g and the covariance matrix X. G(+; «, 8)
denotes the gamma distribution with the shape parameter o and the
scale parameter (3.
‘We can approximate the required posterior as

p(v,m,b,w, fIX,y)
~q(y,m,b,w, f) = q(v)q(n)q(b, w)q(f),

and define each factor in the ensemble just like its full conditional
distribution:

(v) = G(v;a(v), B(7),
(m) = [T 9(na; a(

d=1

q
q na), B(1na)),
att,0) = A (| im0, ). 50,0 ).

N

a(f) = [T TN (Fn; 1(f), S(fn), p(f2)),

n=1
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where a(-), B(-), p(-), and X(-) denote the shape parameter, the
scale parameter, the mean vector, and the covariance matrix for their
arguments, respectively. TN (+; i, 3, p(+)) represents the truncated
normal distribution with the mean vector p, the covariance ma-
trix 3, and the truncation rule p(-) such that TN (:; p, 3, p(+)) o
N (5 p, Z) if p(+) is true and TN (+; 1, 2, p(+)) = 0 otherwise.

We can bound the likelihood using Jensen’s inequality:

log p(y[X)
Z ]ElZ[logp(’y?/rh ba w, .f7y|X)] - El][log q(’y’ n, bv w, .f)]7

where E,[-] denotes the posterior expectations, and optimize this
bound by maximizing with respect to each factor until convergence,
leading to the following update equations:

a(y) = ay +

1 a1 5\ 7!

-1
a(ng) = an + % B(na) = (Bn‘l + %]Eq[w?i]) .5
_ [EdM+ N 17X -
B w) = [ X1 diag(E,[A)) +XXT} » ©®
T

o, w) = 200) (| | Eal1). g
E(fn) =1, p(fn) £ fnln > v, ®)
(1(fn) = B(fn) Egw " n + b, ©

where 1 denotes a vector of ones of appropriate dimension.

3.2 AUC-Maximizing Linear Classifier Variant
Using Pairwise Ranking

To develop our linear classification variant with pairwise ranking fla-
vor, we first start by replacing (3) in our baseline Bayesian probit
regression model with (1). In this modified model, the update equa-
tions for v, 1, b, and w remain intact because they are assumed to
be independent from f in the posterior approximation. However, we
can not have closed-form update equations for the parameters of the
output values { fn}ﬁle owing to the softmax function in (1). Instead,
we update these parameters by solving a series of unconstrained op-
timization problems on the lower bound.

The lower bound we need to maximize to update the parameters
of the output values is

N

Z(Eq[logp(f'ﬂ‘bv w, wn)] —Eq

n=1

Ly(f) = [log q(fn)])

+ 375" Eyllog p(zn ol fun, fo)] + const.,

neP oeN

where the first two terms are log-likelihood and negative entropy
terms for the output values, whereas the third term stems from the
auxiliary random variables introduced in (1). The log-likelihood term
can be decomposed as

Eq[log p(fnlb, w, xx)]

1 1
=E, *5108;(277) - §(fn -

w' x, — b)2

Eyfw ", + b]

1
2

1 1 2
= —5 lOg(?ﬂ') - i]Eq[fn} +]Eq[fn}

Eql(w' @n +b)7,

where E;[fn] = w(fn)? +2(fn). The negative

entropy term is

p(fn) and Eq[frzz] =

Eqlloga( )] = — 5 (08(2x5(fa)) + 1).

The last term with the softmax function can be lower bounded with a
local variational approximation, which uses a linear Taylor expansion
of the log function [2]:

Eq[log p(2n,ol fr, fo)] = Eq {log(exp(;x)pifgip(fo))}
=Eq[fn] —

Eq[log(exp(fn) + exp(fo))]

R )
Cn,o e ’

where {Cn,0 tnep,ocn is the set of variational parameters introduced
and Eq[exp(fn)] = exp(u(fn) + (fn)/2).

We can now write the lower bound as a function of {u(fn)}h_;,
{S(f2)}21, and {Cn,o}ner,oen’» and optimize the lower bound
with respect to each of these three sets of parameters separately.

> Bl -

3.2.1 Optimizing L,(f) with respect to {Cn.0 }neP,oeN
Given {u(fn)}2—, and {X(f.)}A_:, the optimal values for

{C’n,o}nep,oe/\[ can be found as
6o = exp () + 20 s exp (s + 242, a0

3.2.2  Derivatives of L,(f) with respect to {p(fn)}N_,

Given {Z(fn) 1 and {¢n 0 }nep,oen’» We can find the first and
second derivatives of the lower bound with respect to {u(frn) tnep
as follows:

OLy(f) _ —p1(fn) + Egw @ + b] + |V

ulfn)
2(fn)
ex fn) +
o;cm p( 2 )
FLy(f) ox S(fn)
ria i ol G

0EN Cn’o
and with respect to {u(fo) }oenr as follows:

aﬁq(f)fi ,me
au(fo) - ,Uz(fo) +]E¢I[ o +b]
()
- ex )+ )
¥ oy e(n+ 2)
2L . . (f.)
ouf? ~ Z;)c p (i + 25 ).

3.2.3 Derivatives of L,( f) with respect to {%(fn)}2_,

Given {u(fn)}o_1 and {Cn 0 }nep,ocn, We can find the first and
second derivatives of the lower bound with respect to {X(fn) }nep
as follows:

oL, (f S(fn) 1
o5 )’"*Z2¢mexp<“(f”)+ 2 )+2E(fn)’

826 Ly (f) _ S(f)) 1
i Z4¢noexp<u<fn>+ J ) s
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and with respect to {¢(fo) }oenr as follows:

9Lq(f)

a( >_‘"Z

3(fo) 1
o )+

PL) L S(f)) 1
az<fo>2‘ P B o p(“(f"“ 2 > ()

As our overall inference scheme, we first perform closed-form
variational updates for 7, 1, b, and w as given in (4)—(7) at each
iteration. However, to optimize the parameters of the output values
f, we replace (8)—(9) with a series of unconstrained optimization
problems. At each iteration, we perform the following four steps to
update these parameters:

s o (ulh) +

(i) update {Cn,o}nep,ocn using (10),
(i) optimize {u(fn)}A_1 using {9Ly(f)/Ou(fn)}A=1 and
{0°Lq(£)/0u(fn)*}n=1,

(iii) update {Cn,o fneP, oen using (10),

() optimize {S(f)}\_, using {9L,(F)/0S(fa)}1 and
(07 Ly(£) /02 (fu) Yo

In the steps (ii) and (iv), we use minFunc Matlab package by Mark
Schmidt, which uses a quasi-Newton strategy with limited-memory
BFGS updates and is publicly available at https://goo.gl/
Vrd5DL. Note that the step (iv) needs to be performed in the log-
domain to ensure the non-negativity of the variance parameters.

3.3 AUC-Maximizing Linear Classifier Variant
Using Listwise Ranking

We follow the same strategy to develop our linear classification vari-
ant with listwise ranking flavor and start by replacing (3) in our base-
line Bayesian probit regression model with (2). Different from the
pairwise ranking variant, we now need fewer auxiliary random vari-
ables, and the lower bound becomes

N

Z(Eq[bgp(fn‘bv w, w”)] -

n=1

Ly(f) = Eq[log g(fr)])

+ Z Eq[log p(2n|{ fo}oew, )] + const.,
nepP

where the first two terms are the same as before. The third term with
the softmax function can again be lower bounded with a local varia-
tional approximation:

exp(fn)
Eq[log p(zn| {foYoew, )] = Eq |log | = 22
5.
= Eq[fn] — Eq 10g< Z eXP(fO))}
0EW,

2 Eq[fn] - ( > C%L]Eq[exp(fo)] -1+ 10g(Cn)>,

0EW,

where {C» }nep is the set of variational parameters introduced. We
expect the lower bound approximation in the listwise setting with

significantly fewer variational parameters to be much tighter than that
of the pairwise setting.

We can again write the lower bound as a function of the mean, co-
variance, and variational parameters, and optimize them separately.

3.3.1 Optimizing L,(f) with respect to {(y nep

Given {u(fn)}2_, and {X(f.)}A_:, the optimal values for
{¢n}nep can be found as

= exp(u(fo)+%)- (n

oeEWy,

3.3.2  Derivatives of L,(f) with respect to {u(f)}N_,

Given {X(f)}A1 and {¢, }nep, we can find the first and second
derivatives of the lower bound with respect to {1(fs)}A_; as fol-
lows:

OLy(f) _ w z _
o) w(fn) + Eqlw @pn +b] + 6(yn = +1)
E(fn)
- - &X )+ -5 |
% om{u+ 52
Wi( NP - N S(fn)
ouf? D;; p( RS >

where By, is P if y,, = —1 and {n} otherwise.

3.3.3  Derivatives of L(f) with respect to {=(fn)}N_,

Given {u(fr)}A_1 and {¢n}ner, we can find the first and second
derivatives of the lower bound with respect to {X(f.)}h—; as fol-
lows:

36 a(f)

1 N (), 1
o5 (f.) Z sg; oo+ 25 ) + g5y

L) 1eX S(h)) 1
82(fn)2_ 0;;"4@ p(“(f”“ 2 > 22(fn)?

Different from our pairwise variant, we now need to update
{Cn}nep using (11) in the steps (i) and (iii) during the variational
inference.

4 EXPERIMENTS

To illustrate the effectiveness of our AUC-maximizing variants with
pairwise ranking (BAMp) and with listwise ranking (BAM ), we re-
port their results on four biomedical data sets (i.e., two cancer and
two HIV data sets) and compare them to the error-minimizing base-
line algorithm (i.e., Bayesian probit regression; BPROBIT). We im-
plement these three algorithms in Matlab, and our implementations
are publicly available at https://goo.gl/DYh7ZR.

We use AUROC and AUPR values from repeated random sub-
sampling validation experiments to compare the classification per-
formance of the algorithms. For each data set, we create 100 random
train/test splits to obtain robust results. For each replication, the train-
ing set is defined by randomly selecting 75% of the data points with
stratification on the phenotype, and the remaining 25% of the sam-
ples are used as the test set. The training set is normalized to have
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Figure 3. Classification results on two cancer data sets. The box-and-whisker plots show the results of the error-minimizing baseline algorithm (BPROBIT),
our AUC-maximizing variant with pairwise ranking (BAMp), and our AUC-maximizing variant with listwise ranking (BAMy ) over 100 replications in repeated
random subsampling validation experiments. The numbers above the figures give the average performance values for each experiment.

zero mean and unit standard deviation, and the test set is then nor-
malized using the mean and the standard deviation of the original
training set.

Owing to the high dimensional inputs in our applications, we rep-
resent data points using an empirical kernel map, i.e., replacing x,
with [k(z1, n) k(xn,xn)] ", which is the main idea be-
hind relevance vector machines [18]. This step reduces the dimen-
sionality of the input space from D to N. We perform experiments
with the linear and Gaussian kernels, where we normalize the lin-
ear kernel to have unit diagonal entries, and the kernel width of the
Gaussian kernel is selected as the average pairwise distance between
the training instances.

The hyper-parameter values are selected as (a, 8y) = (1,1) and
(an, By) = (1,1) for all algorithms, and v = 1 for BPROBIT. We
perform at most 200 iterations or stop when the improvement in the
lower bound between successive iterations is less than 0.001% during
variational inference.

4.1 Classification Results on Cancer Data Sets

Micro-satellite instability is a hypermutable phenotype caused by the
loss of DNA mismatch repair activity. It is frequently observed in
several tumor types such as colorectal, endometrial, gastric, ovarian,
and sebaceous carcinomas [19]. Tumors with micro-satellite insta-
bility do not respond to chemotherapeutic strategies developed for
micro-satellite stable tumors, leading to its clinical importance. That
is why we address the problem of predicting micro-satellite insta-
bility status of cancer patients from their gene expression data. We
use two publicly available data sets provided by the Cancer Genome
Atlas (TCGA) consortium: (i) colon and rectum adenocarcinoma
(COADREAD) patients [16] and (ii) uterine corpus endometrial car-
cinoma (UCEC) patients [17].

The phenotype values of cancer patients for both data sets are
downloaded from the TCGA website (https://tcga-data.
nci.nih.gov), which groups the patients into three categories:
(i) micro-satellite instability high (MSI-H), (ii) micro-satellite insta-

bility low (MSI-L), and (iii) micro-satellite stable (MSS). The pre-
processed genomic characterizations of primary tumors from the pa-
tients (i.e., mRNA gene expression) are downloaded from http:
//dx.doi.org/10.7303/syn300013, where 20530 normal-
ized gene expression intensities are provided for each profiled pri-
mary tumor. We remove the patients with missing phenotype value
or genomic data from further analysis. At the end, there are 261
(37 MSI-H, 43 MSI-L, and 181 MSS) and 330 (108 MSI-H, 27
MSI-L, and 195 MSS) patients with available phenotype value and
genomic data for COADREAD and UCEC data sets, respectively.
We run binary classification experiments to separate MSI-H patients
from others (i.e., MSI-L and MSS), which is in agreement with the
earlier studies that combine MSI-L and MSS tumors into the same
group [19].

Figure 3 compares the performance of the baseline algorithm and
our two variants on two cancer data sets in terms of AUROC and
AUPR over 100 replications, and reports the average AUROC and
AUPR values for each experiment. We clearly see that our AUC-
maximizing variants obtain better classification results than the error-
minimizing baseline in most scenarios (and comparable results in
few cases). Note that our listwise variant BAM|. obtains better AU-
ROC values than our pairwise variant BAMp in all scenarios, possi-
bly owing to its tighter lower bound approximation.

4.2 Classification Results on HIV Data Sets

Predicting the effect of a drug using pretreatment genomic informa-
tion is a current computational challenge in modern medicine. For
example, HIV Drug Resistance Database (HIVDB) contains pheno-
type (i.e., drug susceptibility results) and genotype (i.e., amino acid
sequences) information about HIV-1 [14], which is publicly available
athttp://hivdb.stanford.edu. On HIVDB, we address the
problem of predicting drug susceptibility of reverse transcriptase se-
quences obtained from HIV patients using the genotype informa-
tion. We extract all sequences originated from subtype B strains and
treated with Zalcitabine (known as DDC) or Emtricitabine (known
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Figure 4. Classification results on two HIV data sets. The box-and-whisker plots show the results of the error-minimizing baseline algorithm (BPROBIT),
our AUC-maximizing variant with pairwise ranking (BAMp), and our AUC-maximizing variant with listwise ranking (BAM| ) over 100 replications in repeated
random subsampling validation experiments. The numbers above the figures give the average performance values for each experiment.

as FTC). We remove the sequences with no phenotype or genotype
information, leading to two final data sets with 472 (174 suscepti-
ble and 298 resistant) and 165 (46 susceptible and 119 resistant) se-
quences for DDC and FTC, respectively.

We use drug susceptibility results measured using the PhenoSense
method for these two nucleoside analogs. Drug susceptibility results
are given as fold change:

IC50 of an isolate
ICs0 of a standard wild-type control isolate’

1C50 ratio =

where ICso of a resistant or wild-type control isolate gives its half
maximal inhibitory concentration. We label sequences as “resistant”
or “susceptible” using drug-specific cutoff values as done similarly
in the earlier studies [8, 15]. The cutoff is set to 1.5 for DDC and to
3.0 for FTC. For each reverse transcriptase, genotype information is
extracted from the amino acid sequence of positions 1-240. Amino
acid differences from the subtype B consensus wild-type sequence
are considered as mutations. There are 856 and 520 unique mutations
for DDC and FTC, which means that sequences can be represented
as 856- or 520-dimensional binary vectors.

Figure 4 compares the performance of the baseline algorithm and
our two variants on two HIV data sets. We see that our listwise
variant BAM;, improves AUROC and AUPR values compared to
the baseline algorithm in all scenarios, whereas our pairwise vari-
ant BAMp can consistently improve AUROC values only with the
Gaussian kernel but not with the linear kernel. Similar to the results
on cancer data sets, our listwise variant BAM;, shows better perfor-
mance than our pairwise variant BAMp in all scenarios.

5 DISCUSSION

We introduce a novel Bayesian inference framework to optimize
AUC measures in Bayesian hierarchical models. This full-Bayesian
treatment is made possible by borrowing the pairwise and listwise
ranking ideas from the information retrieval literature. To showcase
our framework, we develop two linear classification algorithms by

modifying Bayesian probit regression model and derive their vari-
ational inference procedures. We then illustrate the practical im-
portance of our framework on four biomedical data sets by valida-
tion experiments. These results show that our algorithms can obtain
better AUROC and AUPR values compared to the baseline error-
minimizing algorithm.

To bound the softmax function, we use a simple local variational
approximation with a linear Taylor expansion of the log function [2].
An interesting topic for future research is to replace this bound with
a much tighter bound such as the one proposed by [12] to further
improve the generalization performance of our framework.
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