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Abstract

We propose a supervised and localized dimensionality reduction method that com-
bines multiple feature representations or kernels. Each feature representation or
kernel is used where it is suitable through a parametric gating model in a super-
vised manner for efficient dimensionality reduction and classification, and local
projection matrices are learned for each feature representation or kernel. The ker-
nel machine parameters, the local projection matrices, and the gating model pa-
rameters are optimized using an alternating optimization procedure composed of
kernel machine training and gradient-descent updates. Empirical results on bench-
mark data sets validate the method in terms of classification accuracy, smoothness
of the solution, and ease of visualization.

1 Introduction

In pattern recognition tasks, data instances can be described using different feature representations
(possibly coming from different input sources) and different similarity (kernel or distance) measures
can be defined over pairs of data instances. Different feature representations or similarity measures
may be suitable for different cases and combining them gives us the possibility to construct a learner
with higher accuracy or a more informative visualization of the data.

Suppose we are given a training data set {(;, y;)}Y_,, where N is the number of training instances,

x; = {x"}L _,, P is the number of feature representations, =™ € RP=, D,, is the dimensionality
of the corresponding feature representation, and y; € {—1,4+1}. In multiple kernel learning (MKL),
the discriminant function is written as the unweighted sum of discriminant functions calculated in
each feature representation (Bach et al.,[2004):

P
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where we can use different mapping functions, ®,, (), on each feature representation, w,, is its
corresponding weight vector, and b is the bias parameter. After eliminating w,, from the model
using duality conditions, the discriminant function becomes
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where the weights satisfy 7,,, > 0 and 22:1 Mm = 1.



Using a fixed combination rule (e.g., convex combination) has the disadvantage of assigning the
same weight to a kernel over the whole input space. Localized multiple kernel learning (LMKL)
overcomes this limitation and learns data-dependent kernel weights using a parametric gating model
(Gonen and Alpaydin, 2008). LMKL rewrites the MKL discriminant function as

P
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where 7),,,(+|-) is a parametric gating model which assigns a weight to feature representation ®,,(-)
and ¥ is the feature representation in which the gating model is learned. The resulting discriminant
function becomes

N
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The gating model in LMKL uses a softmax gating that divides the gating space into regions:

exp((Vm, 9) + Umo)

Z exp({vp, wg> + vpo)

h=1
where V = {v1,v10,v2,v20,...,0p,vpg} is the vector of gating parameters. The feature repre-
sentation used in gating, 9, can be one of the feature representations or a concatenation of them.

N (9| V) = Ym (1)

Since each feature is used in a localized part of the input space, one can reduce the dimensionality
in there leading to a smoother overall discriminant. Furthermore, the gating model which is fed by
the concatenation of all features is very high-dimensional and can be simplified when the feature
representations are redundant and/or correlated.

In this paper, we propose a supervised and localized dimensionality reduction method, named as
SLDR, from multiple feature representations or kernels coupled with a kernel machine. In Sec-
tion [2} we describe the method in more detail and derive the learning algorithm step by step in
Appendix [A] We then demonstrate its performance on benchmark data sets in Appendix [BJand con-
clude in Section[3

2 Supervised and localized dimensionality reduction

The idea is to learn a projection matrix for each feature representation and decide the projection to
use for each data instance using a gating model. So, we have P different projections for each data
instance:

m __ T,..m
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where W,,, € RPm*Fm and R,, is the dimensionality of the corresponding projection space. Using
these local projection matrices, we can rewrite the discriminant function as

P
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where 7, (-|-) assigns a weight to the corresponding projection space. If we use the gating model in
(1), we have P(Dg + 1) parameters to learn, where Dg is the dimensionality of the gating space.
For example, if we use the concatenation of all feature representations as the gating space, we may
need to optimize a very large number of parameters. Instead, we also reduce the dimensionality in
the gating model as follows:

29 =T"a9
where T € RP9*E¢ and Rg is the dimensionality of the new projected gating space. Rewriting the
gating model, we get
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Integrating the new discriminant function in (2) into the canonical support vector machine (SVM)
framework and minimizing the sum of squared norms of each feature representation gives us the
following optimization problem:
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where S, is the dimensionality of the mapped feature space constructed by ®,,,(-). We now need to
optimize the gating model parameters and the projection matrices in addition to the original SVM
parameters. Unfortunately, this problem is not convex and we propose to use an alternating opti-
mization approach (see Appendix[A). In this iterative approach, a canonical SVM solver is called in
the inner loop and the extra parameters can be updated using gradient-descent, projected gradient-
descent, or by solving another optimization problem. Similar alternating optimization approaches
have been proposed to optimize the disjoint parameter subsets of learning algorithms in a coupled
manner (Chapelle et al.| 2002} [Pereira and Gordon, [2006; |Gonen and Alpaydin, |2008; |Rakotoma-
monjy et al., [2008; |Lin et al., [2009).

Our work builds upon those of |Chapelle et al.| (2002) and [Pereira and Gordon| (2006) who combine
dimensionality reduction and classifier training for a single feature representation. [Lin et al.|(2009)
propose a dimensionality reduction method that uses multiple kernels to embed data instances from
different feature spaces to a unified feature space using a graph embedding framework. Our previous
work (Gonen and Alpaydinl [2010) uses this same idea of supervised and localized dimensionality
reduction except that the same, single feature representation is used in all local models and gating;
combining multiple feature representations is novel in this present paper.

We perform experiments on the Multiple Features (MULTIFEAT) digit recognition data set from the
UCI Repository (details are given in Appendix [B). Figure [T] shows the two-dimensional projected
gating space and the two-dimensional local projection spaces obtained by SLDR without a decrease
in accuracy and using fewer support vectors. The gating model effectively eliminates two of the six
feature representations and divides the projected gating space into four regions.

a® MoORr

Figure 1: The projected gating space and the local projection spaces obtained by SLDR with R,,, =
2 and Rg = 2 on the MULTIFEAT data set



3 Conclusions

We introduce a supervised and localized dimensionality reduction method that uses multiple feature
representations or kernels. The proposed method has three basic components: (a) the gating model
that assigns weights to each feature representation or kernel, (b) the local projection matrices that
perform dimensionality reduction separately for each feature representation or kernel, and (c) the
kernel machine that performs classification using these locally obtained projections.

The training of these three components are performed in a coupled and supervised manner using an
alternating optimization procedure. The gating model parameters and the local projection matrices
are updated at each iteration using gradient-descent steps calculated from the objective function of
the kernel machine.

The proposed algorithm is tested and compared with SVM, MKL, and LMKL on benchmark data
sets for classification tasks. We achieve comparable accuracy results using significantly fewer sup-
port vectors. The reduction in support vector count is mainly due to low dimensionality of the
projection spaces, which allows us to find smooth discriminants.

We use KPCA to map from kernels to features. Another possibility is to use an empirical kernel
map (Scholkopf et al.l |2004) by using the pairwise kernel values of a data instance with all the
training instances as the feature vector. We also perform simulations with this approach and see that
KPCA works better. The empirical kernel map is very high-dimensional and does not lend itself
well to dimensionality reduction.

Like other MKL methods, SLDR also provides knowledge extraction through the weights assigned
to feature representations or kernels. A figure like Figure[I]is very informative: We can understand
the most informative feature representation or kernel by looking at the gating values and we can
conclude that the feature representations or kernels not used by the gating model do not carry useful
information at all. Feature representations or kernels never used by the gating can be completely
eliminated in order to reduce the cost of data acquisition and processing.
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A Learning algorithm

A.1 Learning the classifier

The optimization problem (@) becomes convex for given gating model parameters and projection
matrices. In this case, we can obtain the dual problem as

N N N
. . P
maximize J(V,T,{W,,};.—1) = 20@- —5 Zl Zlaiajyiyjkn(mi,wj)
1= =1 j=
with respectto « € Rf
N
subject to Z a;y; =0
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C>a; >0 Vi ®)

where the kernel function is defined as
n(@i, ;) Z M (2 |V Tk (W2, Wz 7 M(xjg|VvT)
and the decision function becomes

= Zaiyikn(:ci,w) +b.

This dual optimization problem is exactly equivalent to the canonical SVM dual problem and we
can use any SVM solver to find the support vector coefficients.

A.2 Learning the gating model

If we fix the support vector coefficients and the projection matrices, we can update the gating model
parameters using gradient-descent. The gradients of the objective function in (5)) with respect to the
gating model parameters are given as

OJ(V, T AW, }[ _ N N P | |
( 3’{% fnst) - ZZZszh o [V, Tk (W) @, Wiz ), (27 [V, T)
/ i=1 j=1 h=1
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where T;; = a4, and (521 is 1 if m = h and O otherwise.

A.3 Learning the projection matrices

We can also update the projection matrices using gradient-descent. For given support vector coeffi-
cients and gating model parameters, the gradient of the objective function in (5)) with respect to the
entries of W, matrices is given as:

0J(V,T {Wm} 1) Ok (W ", W, ") g
m=) _ _ - Yiinm (@9 |V, T (29|, T
T ZZ (@ [V, T) == (2 [V, )
where [-, -] indexes the entries of a matrix. Three commonly used kernel functions, linear kernel,

polynomial kernel, and Gaussian kernel, can be represented in terms of projection matrices as fol-



lows:
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The derivatives of the kernels w1th respect to the entries of the projection matrices are given as:
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where [-] indexes the entries of a vector. We also need to calculate the gradient of the objective
function in (B)) with respect to the entries of T

N N P P

P
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Both T and {Wm}m_]_rmatrlces are performlng projections and they would be members of the
Stiefel manifold (i.e., =Tand W, W,,, = I) in order to obtain meaningful projections. We
can achieve this by projecting these matrices to the Stiefel manifold after initialization and gradient
update. For example, the singular value decomposition can be used to make the columns of these
matrices mutually orthogonal and have unit norm.

A.4 Complete algorithm

The complete algorithm of our proposed method called supervised and localized dimensionality
reduction (SLDR) is summarized in Algorithm[I] The gating model parameters and the projection
matrices are initialized to random numbers at the first iteration. A®, vV and /N) are the step
sizes of the corresponding gradient-descent updates. These step sizes can be taken as constants or
can be optimized using a line search method like Armijo’s rule. Line search increases the time
complexity of each iteration due to additional calls to the canonical SVM solver but the algorithm
converges in fewer iterations. The three gradient formulations depend only on the current support
vectors (i.e., if a; = 0, =; does not contribute to the gradients) and have ignorable time complexity
compared to solving the canonical SVM problems with locally combined kernel matrix Ky =

N . . oo
{kn (4, ;) }i,jzl' We can determine the convergence of the algorithm by monitoring the change
in the objective function value.

B Experiments

We evaluate the proposed method on benchmark data sets in terms of visualization and classification
performances. We implement the main body of our algorithm in MATLAB and solve the optimiza-
tion problems with MOSE optimization software. We stop the algorithm when the objective value
of the current iteration is not less than 0.999 times the objective function value of the previous iter-
ation (i.e., when we achieve less than one-thousandth improvement in the objective function value).

B.1 Dimensionality Reduction from Multiple Feature Representations

We perform experiments on the Multiple Features (MULTIFEAT) digit recognition data set from
the UCI Machine Learning Repositoryﬁ composed of six different feature representations for 2000
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Algorithm 1 SUPERVISED AND LOCALIZED DIMENSIONALITY REDUCTION (SLDR)

1: Initialize {V(©) T©) WEOI)J} to small random numbers

2: repeat

3:  Calculate Ky using {V(f), T, WE%}

4: Solve canonical SVM with Ky

) 6‘](V5 Tv {Wm}fzzl)
OW,,

6:  Calculate Ky using {V(), T®), witthy

7: Solve canonical SVM with Ky

aJ(V7 T’ {Wm}rfzzl)

5. WU = wl) _AC Vm

g T = 1® — p® T
9:  Calculate Ky using {V®), T+, witthy
10:  Solve canonical SVM with Ky
aJ(V7 T’ {Wm}r}:zzl)
oV

e VD o VO

12: until convergence

handwritten numerals. The properties of these feature representations are summarized in Table [T}
We generate a binary classification problem from the MULTIFEAT data set by separating small (‘0 -
‘4’) digits from large (°5° - 9°) digits.

Table 1: Multiple feature representations in the MULTIFEAT data set.

Name Dim. Data Source

Fac 216  Profile correlations

Fou 76  Fourier coefficients of the shapes
KAR 64  Karhunen-Loeve coefficients
MOR 6  Morphological features

P1x 240  Pixel averages in 2 X 3 windows
ZER 47  Zernike moments

A random one-third of the dataset is reserved as the test set and the remaining two-thirds is resam-
pled using 5 x 2 cross-validation to generate ten training and validation sets, with stratification. The
validation sets of all folds are used to optimize C' by trying values 1, 10, and 100. The best configu-
ration (the one that has the highest average accuracy on the validation folds) is used to train the final
classifiers on the training folds and their performance is measured over the test set. We have ten test
set results, and we report their averages and standard deviations.

We compare SVM, MKL, LMKL, and SLDR in terms of classification performance and model
complexity (i.e., stored support vector percentage). We train SVMs with linear kernels calculated
on each feature representation singly and report the results of the one with the highest average
validation accuracy. We also train an SVM with linear kernel calculated on the concatenation of
all feature representations, which will be referred as ALL. MKL is the original formulation of
Bach et al| (2004). LMKL combines linear kernels calculated on each feature representation and
uses the concatenation of all feature representations in the gating model without any dimension-
ality reduction. Our proposed SLDR combines linear kernels calculated on each projection space
(Rm € {1,2,3,4,5}) and uses the projected gating space (Rg € {2,4, 6,8,10}) obtained from the
concatenation of all feature representations.

Table [2] summarizes the classification results on the MULTIFEAT data set. SVM (FAC) is the most
accurate classifier with a single feature representation. We see that integrating multiple feature
representations obtains higher average test accuracy than SVM (FAC). LMKL is accurate as MKL
storing half as many support vectors. SLDR is also accurate and stores much fewer support vectors.
SLDR achieves statistically comparable accuracy result compared with other integration methods
and stores significantly fewer support vectors.



Table 2: Classification results on the MULTIFEAT data set.

Method Test Accuracy  Support Vector

SVM (FAcC) 94.97+0.87 17.93+0.91
SVM (ALL)  97.694+0.44 23.34+£1.13

MKL 97.40+0.37 32.59+0.82
LMKL 97.73£0.57 14.35+1.43
SLDRx 97.094+0.52 2.89+0.67

*: Ry, =2and Rg = 10

The average test accuracies and support vector percentages obtained with changing R?,,, and Rg are
shown in Figure[2] We see that SLDR consistently finds accurate solutions storing very few support
vectors.

Figure [T| shows the projected gating space and the local projection spaces obtained by SLDR with
R,, = 2 and Rg = 2. The projected gating space shows all of the training instances and how
instances are divided among feature spaces. Each training instance is drawn in the projection space
where it has the maximum gating value. The gating model effectively eliminates two of the fea-
ture representations (KAR and P1x) and divides the projected gating space into four regions. In
each region, a specific feature representation is used and a local projection matrix is learned. The
separating hyperplanes and the margin boundaries obtained in the local projection spaces for each
region are also given in Figure [I] Even when we use one-dimensional projections in each region,
we get an accurate solution as shown in Figure[3} SLDR again uses only four out of the six feature
representations and eliminates FOU and PIx.

o

accuracy
support vector
(&

oo

Figure 2: The average test accuracies and support vector percentages obtained by SLDR with chang-
ing R,, and Rg on the MULTIFEAT data set
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Figure 3: The projected gating space and the local projection spaces obtained by SLDR with R,,, =
1 and Rg = 2 on the MULTIFEAT data set



B.2 Dimensionality Reduction from Multiple Kernels

In some applications, we may not have the feature representations but the kernel values (similarity
measures) defined on pairs of data instances. In order to learn the gating model and the projection
matrices, we need data instances to be in vector format. For this, we apply kernel principle com-
ponent analysis (KPCA) (Scholkopf and Smolal 2002) to each kernel function and the resulting
projections are used as feature representations to fed into SLDR.

We perform protein location prediction experiment on the MIPS Comprehensive Yeast Genome
Database (CYGD) (Mewes et al., 2000). CYGD assigns subcellular locations for 1150 proteins
according to whether they participate in the ribosome or not. We use the seven kernels given in
Lanckriet et al.| (2004) and apply KPCA to each of them by following the first approach. The
eigenvectors that corresponds to the nonzero eigenvalues are preserved and the resulting projections
are taken as the feature representations. We use the same experimental procedure that we use for the
MULTIFEAT data set.

Table 3: Multiple kernels in the YEAST data set.

Name  Similarity Data source

Kpg BLAST Protein sequences
Kp Diffusion kernel ~ Protein interactions
Kg Gaussian kernel ~ Gene expression
Krrr  FFT Hydropathy profile
K Linear kernel Protein interactions
Kpiaw PFAM HMM Protein sequences

Ksw Smith-Waterman  Protein sequences

Table [ lists classification results. We see that integrating multiple feature representations obtained
from different kernels does not improve the average test accuracy compared with the best SVM
result using the kernel Kg. We see that unlike other methods (MKL and LMKL), SLDR obtains
lower (but not significantly) average test accuracy compared with the best SVM result and stores
significantly fewer support vectors.

Table 4: Classification results on the YEAST data set.

Method Test Accuracy  Support Vector

SVM (Kg) 98.80£0.25 100.00+ 0.00
SVM (ALL)  92.08+0.59 100.00+ 0.00

MKL 89.92+3.95 100.00+ 0.00
LMKL 76.64=£1.77 95.30+ 9.51
SLDRx 95.314+2.50 2.04+ 1.71

*: Ry, =5and Rg =2

We also perform protein fold recognition experiments using multiple feature representations and
kernels. We use the protein fold recognition data set, which we call PROTEIN, from the UCSD Mul-
tiple Kernel Learning Repositor We construct a binary classification problem by combining the
major structural classes {, bta} into one class and {«/bta, a + bta} into another class. The data set
consists of 10 different feature representations (COMPOSITION, HYDROPHOBICITY, L1, L14, L30,
L4, POLARITY, POLARIZABILITY, SECONDARY, VOLUME) and two kernels (SWBLOSUM, SW-
PAM). Due to small size of this dataset, we use 10-fold cross-validation instead of 5 x 2 cross-
validation and use 90 per cent of the learning set for training at each fold. We calculate linear kernel
on the feature representations to obtain 12 kernels and apply KPCA to each of them in order to
obtain feature representations to fed into SLDR.

3 Available from http: //mkl.ucsd.edul


http://mkl.ucsd.edu

Table [5] summarizes the classification results on the PROTEIN data set. We see that integrating mul-
tiple feature representations obtains higher average test accuracy than the best SVM result with the
single feature representation L14. SLDR achieves statistically comparable accuracy result com-
pared to the best integration method MKL and stores significantly fewer support vectors. Similar to
what we see on the YEAST data set, LMKL, unlike SLDR, is affected by the high dimensionality
of the gating space.

Table 5: Classification results on the PROTEIN data set.

Method Test Accuracy  Support Vector

SVM (L14)  71.44%1.12 51.27+1.82
SVM (ALL)  81.57%0.85 97.93+0.56

MKL 84.05+0.87 83.96£2.13
LMKL 75.774+2.23 40.41£1.73
SLDRx 82.17£1.93 4.18£2.05

*: R,, =5and Rg =6

If we learn the gating model in a two-dimensional projected gating space and use one-dimensional
projections in each region, we obtain the projection spaces shown in Figure 4, SLDR uses only
three out of the 12 feature representations, namely L30, SWBLOSUM, and VOLUME, and there,
one-dimensional discriminants suffice.

/VOLUME ; ‘
/ o @ e ox
: ‘ L30
%xxxm Dll:lﬂ]_j[]x-uj oxx X
v x 3 SWBLOSUM
\° ‘ ‘
Q o \\ o 0O Omm o n:ﬁ )3‘”( XK
SWBLOSUM \ ; ' VOLUME

Figure 4: The projected gating space and the local projection spaces obtained by SLDR with R,,, =
1 and Rg = 2 on the PROTEIN data set
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