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Abstract

In many modern applications from, for example, bioinformatics and computer vi-
sion, samples have multiple feature representations coming from different data
sources. Multiview learning algorithms try to exploit all these available informa-
tion to obtain a better learner in such scenarios. In this paper, we propose a novel
multiple kernel learning algorithm that extends kernel k-means clustering to the
multiview setting, which combines kernels calculated on the views in a localized
way to better capture sample-specific characteristics of the data. We demonstrate
the better performance of our localized data fusion approach on a human colon
and rectal cancer data set by clustering patients. Our method finds more relevant
prognostic patient groups than global data fusion methods when we evaluate the
results with respect to three commonly used clinical biomarkers.

1 Introduction

Clustering algorithms aim to find a meaningful grouping of the samples at hand in an unsupervised
manner for exploratory data analysis. k-means clustering is one of the classical algorithms (Harti-
gan, 1975), which uses k prototype vectors (i.e., centers or centroids of k clusters) to characterize
the data and minimizes a sum-of-squares cost function to find these prototypes with a coordinate
descent optimization method. However, the final cluster structure heavily depends on the initializa-
tion because the optimization scheme of k-means clustering is prone to local minima. Fortunately,
the sum-of-squares minimization can be formulated as a trace maximization problem, which can
not be solved easily due to binary decision variables used to denote cluster memberships, but this
hard optimization problem can be reduced to an eigenvalue decomposition problem by relaxing the
constraints (Zha et al., 2001; Ding and He, 2004). In such a case, overall clustering algorithm can be
formulated in two steps: (i) performing principal component analysis (PCA) (Pearson, 1901) on the
covariance matrix and (ii) recovering cluster membership matrix using the k eigenvectors that cor-
respond to the k largest eigenvalues. Similar to many other learning algorithms, k-means clustering
is also extended towards a nonlinear version with the help of kernel functions, which is called kernel
k-means clustering (Girolami, 2002). The kernelized variant can also be optimized with a spectral
relaxation approach using kernel PCA (KPCA) (Schölkopf et al., 1998) instead of canonical PCA.

In many modern applications, samples have multiple feature representations (i.e., views) coming
from different data sources. Instead of using only one of the views, it is better to use all available in-
formation and let the learning algorithm decide how to combine these data sources, which is known
as multiview learning. There are three main categories for the combination strategy (Noble, 2004):
(i) combination at the feature level by concatenating the views (i.e., early integration), (ii) combi-
nation at the decision level by concatenating the outputs of learners trained on each view separately
(i.e., late integration), and (iii) combination at the learning level by trying to find a unified distance,
kernel, or latent matrix using all views simultaneously (i.e., intermediate integration).
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1.1 Related work

When we have multiple views for clustering, we can simply concatenate the views and train a stan-
dard clustering algorithm on the concatenated view, which is known as early integration. However,
this approach does not assign weights to the views, and the view with the highest number of features
might dominate the clustering step due to the unsupervised nature of the problem.

Late integration algorithms obtain a clustering on each view separately and combine these clustering
results using an ensemble learning scheme. Such clustering algorithms are also known as cluster
ensembles (Strehl and Ghosh, 2002). However, they do not exploit the dependencies between the
views during clustering, and these dependencies might already be lost if we combine only clustering
results in the second step.

Intermediate integration algorithms combine the views in a single learning scheme to collectively
find a unified clustering. Chaudhuri et al. (2009) propose to extract a unifying feature representation
from the views by performing canonical correlation analysis (CCA) (Hotelling, 1936) and to train
a clustering algorithm on this common representation. Similarly, Blaschko and Lampert (2008) ex-
tract a common feature representation but with a nonlinear projection step using kernel CCA (Lai
and Fyfe, 2000) and then perform clustering. Such CCA-based algorithms assume that all views are
informative, and if there are some noisy views, this can degrade the clustering performance dras-
tically. Lange and Buhmann (2006) propose to optimize the weights of a convex combination of
view-specific similarity measures within a nonnegative matrix factorization framework and to as-
sign samples to clusters using the latent matrices obtained in the factorization step. Valizadegan and
Jin (2007) extend the maximum margin clustering formulation of Xu et al. (2004) to perform ker-
nel combination and clustering jointly by formulating a semidefinite programming (SDP) problem.
Chen et al. (2007) further improve this idea by formulating a quadratically constrained quadratic
programming problem instead of an SDP problem. Tang et al. (2009) convert the views into graphs
by placing samples into vertices and creating edges using the similarity values between samples
in each view, and then factorize these graphs jointly with a shared factor common to all graphs,
which is used for clustering at the end. Kumar et al. (2011) propose a co-regularization strategy
for multiview spectral clustering by enforcing agreement between the similarity matrices calculated
on the latent representations obtained from the spectral decomposition of each view. Huang et al.
(2012) formulate another multiview spectral clustering method that finds a weighted combination
of the affinity matrices calculated on the views. Yu et al. (2012) develop a multiple kernel k-means
clustering algorithm that optimizes the weights in a conic sum of kernels calculated on the views.
However, their formulation uses the same kernel weights for all of the samples.

Multiview clustering algorithms have attracted great interest in cancer biology due to the availability
of multiple genomic characterizations of cancer patients. Yuan et al. (2011) formulate a patient-
specific data fusion algorithm that uses a nonparametric Bayesian model coupled with a Markov
chain Monte Carlo inference scheme, which can combine only two views and is computationally
very demanding due to the high dimensionality of genomic data. Shen et al. (2012) and Mo et al.
(2013) find a shared latent subspace across genomic views and cluster cancer patients using their
representations in this subspace. Wang et al. (2014) construct patient networks from patient–patient
similarity matrices calculated on the views, combine these into a single unified network using a
network fusion approach, and then perform clustering on the final patient network.

1.2 Our contributions

Intermediate integration using kernel matrices is also known as multiple kernel learning (MKL)
(Gönen and Alpaydın, 2011). Most of the existing MKL algorithms use the same kernel weights
for all samples, which may not be a good idea due to sample-specific characteristics of the data or
measurement noise present in some of the views. In this work, we study kernel k-means cluster-
ing under the multiview setting and propose a novel MKL algorithm that combines kernels with
sample-specific weights to obtain a better clustering. We demonstrate the better performance of our
algorithm on the human colon and rectal cancer data set provided by TCGA consortium (The Cancer
Genome Atlas Network, 2012), where we use three genomic characterizations of the patients (i.e.,
DNA copy number, mRNA gene expression, and DNA methylation) for clustering. Our localized
data fusion approach obtains more relevant prognostic patient groups than global fusion approaches
when we evaluate the results with respect to three commonly used clinical biomarkers (i.e., micro-
satellite instability, hypermutation, and mutation in BRAF gene) of colon and rectal cancer.
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2 Kernel k-means clustering

We first review kernel k-means clustering (Girolami, 2002) before extending it to the multiview
setting. Given N independent and identically distributed samples {xi ∈ X}ni=1, we assume that
there is a function Φ(·) that maps the samples into a feature space, in which we try to minimize a
sum-of-squares cost function over the cluster assignment variables {zic}n,ki=1,c=1. The optimization
problem (OPT1) defines kernel k-means clustering as a binary integer programming problem, where
nc is the number of samples assigned to cluster c, and µc is the centroid of cluster c.

minimize
n∑

i=1

k∑
c=1

zic‖Φ(xi)− µc‖22

with respect to zic ∈ {0, 1} ∀(i, c)

subject to
k∑

c=1

zic = 1 ∀i

where nc =

n∑
i=1

zic ∀c, µc =
1

nc

n∑
i=1

zicΦ(xi) ∀c

(OPT1)

We can convert this optimization problem into an equivalent matrix-vector form problem as follows:

minimize tr ((Φ−M)>(Φ−M))

with respect to Z ∈ {0, 1}n×k

subject to Z1k = 1n

where Φ = [Φ(x1) Φ(x2) . . . Φ(xn)], M = ΦZLZ>,

L = diag (n−11 , n−12 , . . . , n−1k ).

(OPT2)

Using that Φ>Φ = K, tr (AB) = tr (BA), and Z>Z = L−1, the objective function of the
optimization problem (OPT2) can be rewritten as

tr ((Φ−M)>(Φ−M)) = tr ((Φ−ΦZLZ>)>(Φ−ΦZLZ>))

= tr (Φ>Φ− 2Φ>ΦZLZ> + ZLZ>Φ>ΦZLZ>)

= tr (K− 2KZLZ> + KZLZ>ZLZ>) = tr (K− L
1
2 Z>KZL

1
2 ),

where K is the kernel matrix that holds the similarity values between the samples, and L
1
2 is defined

as taking the square root of the diagonal elements. The resulting optimization problem (OPT3) is a
trace maximization problem, but it is still very difficult to solve due to the binary decision variables.

maximize tr (L
1
2 Z>KZL

1
2 −K)

with respect to Z ∈ {0, 1}n×k

subject to Z1k = 1n

(OPT3)

However, we can formulate a relaxed version of this optimization problem by renaming ZL
1
2 as H

and letting H take arbitrary real values subject to orthogonality constraints.

maximize tr (H>KH−K)

with respect to H ∈ Rn×k

subject to H>H = Ik

(OPT4)

The final optimization problem (OPT4) can be solved by performing KPCA on the kernel matrix
K and setting H to the k eigenvectors that correspond to k largest eigenvalues (Schölkopf et al.,
1998). We can finally extract a clustering solution by first normalizing all rows of H to be on the
unit sphere and then performing k-means clustering on this normalized matrix. Note that, after the
normalization step, H contains k-dimensional representations of the samples on the unit sphere, and
k-means is not very sensitive to initialization in such a case.
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3 Multiple kernel k-means clustering

In a multiview learning scenario, we have multiple feature representations, where we assume that
each representation has its own mapping function, i.e., {Φm(·)}pm=1. Instead of an unweighted
combination of these views (i.e., simple concatenation), we can obtain a weighted mapping function
by concatenating views using a convex sum (i.e., nonnegative weights that sum up to 1). This
corresponds to replacing Φ(xi) with Φθ(xi) =

[
θ1Φ1(xi)

> θ2Φ2(xi)
> . . . θpΦp(xi)

>]>,
where θ ∈ Rp

+ is the vector of kernel weights that we need to optimize during training. The kernel
function defined over the weighted mapping function becomes

kθ(xi,xj) = 〈Φθ(xi),Φθ(xj)〉 =

p∑
m=1

〈θmΦm(xi), θmΦm(xj)〉 =

p∑
m=1

θ2mkm(xi,xj),

where we combine kernel functions using a conic sum (i.e., nonnegative weights), which guarantees
to have a positive semi-definite kernel function at the end. The optimization problem (OPT5) gives
the trace maximization problem we need to solve.

maximize tr (H>KθH−Kθ)

with respect to H ∈ Rn×k, θ ∈ Rp
+

subject to H>H = Ik, θ
>1p = 1

where Kθ =

p∑
m=1

θ2mKm

(OPT5)

We solve this problem using a two-step alternating optimization strategy: (i) Optimize H given θ.
If we know the kernel weights (or initialize randomly in the first iteration), solving (OPT5) reduces
to solving (OPT4) with the combined kernel matrix Kθ, which requires performing KPCA on Kθ.
(ii) Optimize θ given H. If we know the eigenvectors from the first step, solving (OPT5) reduces to
solving (OPT6), which is a convex quadratic programming (QP) problem with p decision variables
and one equality constraint, and is solvable with any standard QP solver up to a moderate number
of kernels.

minimize
p∑

m=1

θ2m tr (Km −H>KmH)

with respect to θ ∈ Rp
+

subject to θ>1p = 1

(OPT6)

Note that using a convex combination of kernels in (OPT5) is not a viable option because if we set
Kθ to

∑p
m=1 θmKm, there would be a trivial solution to the trace maximization problem with a

single active kernel and others with zero weights, which is also observed by Yu et al. (2012).

4 Localized multiple kernel k-means clustering

Instead of using the same kernel weights for all samples, we propose to use a localized data fu-
sion approach by assigning sample-specific weights to kernels, which enables us to capture sample-
specific characteristics of the data and to get rid of sample-specific noise that may be present in
some of the views. In our localized combination approach, the mapping function is represented as
ΦΘ(xi) =

[
θi1Φ1(xi)

> θi2Φ2(xi)
> . . . θipΦp(xi)

>]>, where Θ ∈ Rn×p
+ is the matrix of

sample-specific kernel weights, which are nonnegative and sum up to 1 for each sample (Gönen and
Alpaydın, 2013). The locally combined kernel function can be written as

kΘ(xi,xj) = 〈ΦΘ(xi),ΦΘ(xj)〉 =

p∑
m=1

〈θimΦm(xi), θjmΦm(xj)〉 =

p∑
m=1

θimθjmkm(xi,xj),

where we are guaranteed to have a positive semi-definite kernel function. The optimization problem
(OPT7) gives the trace maximization problem with the locally combined kernel matrix, where θm ∈
Rn

+ is the vector of kernel weights assigned to kernel m, and ◦ denotes the Hadamard product.
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maximize tr (H>KΘH−KΘ)

with respect to H ∈ Rn×k, Θ ∈ Rn×p
+

subject to H>H = Ik, Θ1p = 1n

where KΘ =

p∑
m=1

(θmθ
>
m) ◦Km

(OPT7)

We solve this problem using a two-step alternating optimization strategy: (i) Optimize H given Θ.
If we know the sample-specific kernel weights (or initialize randomly in the first iteration), solving
(OPT7) reduces to solving (OPT4) with the combined kernel matrix KΘ, which requires performing
KPCA on KΘ. (ii) Optimize Θ given H. If we know the eigenvectors from the first step, using that
tr (A>((cc>) ◦B)A) = c>((AA>) ◦B)c, solving (OPT7) reduces to solving (OPT8), which is
a convex QP problem with n× p decision variables and n equality constraints.

minimize
p∑

m=1

θ>m((In −HH>) ◦Km)θm

with respect to Θ ∈ Rn×p
+

subject to Θ1p = 1n

(OPT8)

Training the localized combination approach requires more computational effort than training the
global approach due to the increased size of QP problem in the second step. However, the block-
diagonal structure of the Hessian matrix in (OPT8) can be exploited to solve this problem much
more efficiently. Note that the objective function of (OPT8) can be written as

θ1
θ2
...
θp


>

(In −HH>) ◦K1 0n×n · · · 0n×n
0n×n (In −HH>) ◦K2 · · · 0n×n

...
...

. . .
...

0n×n 0n×n · · · (In −HH>) ◦Kp



θ1
θ2
...
θp

,
where we have an n× n matrix for each kernel on the diagonal of the Hessian matrix.

5 Experiments

Clustering patients is one of the clinically important applications in cancer biology because it helps
to identify prognostic cancer subtypes and to develop personalized strategies to guide therapy. Mak-
ing use of multiple genomic characterizations in clustering is critical because different patients may
manifest their disease in different genomic platforms due to cancer heterogeneity and measurement
noise. We use the human colon and rectal cancer data set provided by TCGA consortium (The Can-
cer Genome Atlas Network, 2012), which contains several genomic characterizations of the patients,
to test our new clustering algorithm in a challenging real-world application.

We use DNA copy number, mRNA gene expression, and DNA methylation data of the patients
for clustering. In order to evaluate the clustering results, we use three commonly used clinical
biomarkers of colon and rectal cancer (The Cancer Genome Atlas Network, 2012): (i) micro-satellite
instability (i.e., a hypermutable phenotype caused by the loss of DNA mismatch repair activity)
(ii) hypermutation (defined as having mutations in more than or equal to 300 genes), and (iii) mu-
tation in BRAF gene. Note that these three biomarkers are not directly identifiable from the input
data sources used. The preprocessed genomic characterizations of the patients can be downloaded
from a public repository at https://www.synapse.org/#!Synapse:syn300013, where
DNA copy number, mRNA gene expression, DNA methylation, and mutation data consist of 20313,
20530, 24980, and 14581 features, respectively. The micro-satellite instability data can be down-
loaded from https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm. In
the resulting data set, there are 204 patients with available genomic and clinical biomarker data.

We implement kernel k-means clustering and its multiview variants in Matlab. Our implementations
are publicly available at https://github.com/mehmetgonen/lmkkmeans. We solve the
QP problems of the multiview variants using the Mosek optimization software (Mosek, 2014). For
all methods, we perform 10 replications of k-means with different initializations as the last step and
use the solution with the lowest sum-of-squares cost to decide cluster memberships.
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We calculate four different kernels to use in our experiments: (i) KC: the Gaussian kernel on DNA
copy number data, (ii) KG: the Gaussian kernel on mRNA gene expression data, (iii) KM: the
Gaussian kernel on DNA methylation data, and (vi) KCGM: the Gaussian kernel on concatenated
data (i.e., early combination). Before calculating each kernel, the input data is normalized to have
zero mean and unit standard deviation (i.e., z-normalization for each feature). For each kernel, we
set the kernel width parameter to the square root of the number of features in its corresponding view.

We compare seven clustering algorithms on this colon and rectal cancer data set: (i) kernel k-means
clustering with KC, (ii) kernel k-means clustering with KG, (iii) kernel k-means clustering with KM,
(iv) kernel k-means clustering with KCGM, (v) kernel k-means clustering with (KC + KG + KM) / 3,
(vi) multiple kernel k-means clustering with (KC, KG, KM), and (vii) localized multiple kernel k-
means clustering with (KC, KG, KM). The first three algorithms are single-view clustering methods
that work on a single genomic characterization. The fourth algorithm is the early integration ap-
proach that combines the views at the feature level. The fifth and sixth algorithms are intermediate
integration approaches that combine the kernels using unweighted and weighted sums, respectively,
where the latter is very similar to the formulations of Huang et al. (2012) and Yu et al. (2012). The
last algorithm is our localized MKL approach that combines the kernels in a sample-specific way.

We assign three different binary labels to each sample as the ground truth using the three clinical
biomarkers mentioned and evaluate the clustering results using three different performance metrics:
(i) normalized mutual information (NMI), (ii) purity, and (iii) the Rand index (RI). We set the number
of clusters to 2 for all of the algorithms because each ground truth label has only two categories.

We first show the kernel weights assigned to 204
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Figure 1: Kernel weights assigned to patients
by our localized data fusion approach. Each dot
denotes a single cancer patient, and patients in
the same cluster are drawn with the same color.

colon and rectal cancer patients by our localized
data fusion approach. As we can see from Fig-
ure 1, some of the patients are very well charac-
terized by their DNA copy number data. Our lo-
calized algorithm assigns weights larger than 0.5
to DNA copy number data for most of the patients
in the second cluster, whereas all three views are
used with comparable weights for the remaining
patients. Note that the kernel weights of each pa-
tient are strictly nonnegative and sum up to 1 (i.e.,
defined on the unit simplex). Our proposed clus-
tering algorithm can identify the most informa-
tive genomic platforms in an unsupervised and
patient-specific manner. Together with the bet-
ter clustering performance and biological inter-
pretation presented next, this particular applica-
tion from cancer biology shows the potential for
localized combination strategy.

Figure 2 summarizes the results obtained by seven clustering algorithms on the colon and rectal can-
cer data set. For each algorithm, the cluster assignment and the values of three clinical biomarkers
are aligned to each other, and we report the performance values of nine biomarker–metric pairs. We
see that DNA copy number (i.e., KC) is the most informative genomic characterization when we
compare the performance of single-view clustering algorithms, where it obtains better results than
mRNA gene expression (i.e., KG) and DNA methylation (i.e., KM) in terms of NMI and RI on all
biomarkers. We also see that the early integration strategy (i.e., KCGM) does not improve the re-
sults because mRNA gene expression and DNA methylation dominate the clustering step due to the
unsupervised nature of the problem. However, when we combine the kernels using an unweighted
combination strategy, i.e., (KC + KG + KM) / 3, the performance values are significantly improved
compared to single-view clustering methods and early integration in terms of NMI and RI on all
biomarkers. Instead of using an unweighted sum, we can optimize the combination weights using
the multiple kernel k-means clustering of Section 3. In this case, the performance values are slightly
improved compared to the unweighted sum in terms of NMI and RI on all biomarkers. Our local-
ized data fusion approach significantly outperforms the other algorithms in terms of NMI and RI on
“micro-satellite instability” and “hypermutation” biomarkers, and it is the only algorithm that can
obtain purity values higher than the ratio of the majority class samples on “mutation in BRAF gene”
biomarker. These results validate the benefit of our localized approach for the multiview setting.
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102 patients 102 patients

Algorithm:
Clusters:

MSI high:
Hypermutation:
BRAF mutation:

Kernel k−means clustering with KC

NMI
0.1466
0.1418
0.0459

Purity
0.8676
0.8480
0.8971

RI
0.5376
0.5426
0.5156

117 patients 87 patients

Algorithm:
Clusters:

MSI high:
Hypermutation:
BRAF mutation:

Kernel k−means clustering with KG

NMI
0.0504
0.0514
0.0174

Purity
0.8676
0.8480
0.8971

RI
0.5082
0.5091
0.5082

83 patients 121 patients

Algorithm:
Clusters:

MSI high:
Hypermutation:
BRAF mutation:

Kernel k−means clustering with KM

NMI
0.0008
0.0049
0.0026

Purity
0.8676
0.8480
0.8971

RI
0.5143
0.5105
0.5143

87 patients 117 patients

Algorithm:
Clusters:

MSI high:
Hypermutation:
BRAF mutation:

Kernel k−means clustering with KCGM

NMI
0.0019
0.0127
0.0041

Purity
0.8676
0.8480
0.8971

RI
0.5105
0.5076
0.5105

119 patients 85 patients

Algorithm:
Clusters:

MSI high:
Hypermutation:
BRAF mutation:

Kernel k−means clustering with (KC + KG + KM) / 3

NMI
0.2437
0.2303
0.0945

Purity
0.8676
0.8480
0.8971

RI
0.6009
0.6096
0.5568

122 patients 82 patients

Algorithm:
Clusters:

MSI high:
Hypermutation:
BRAF mutation:

Multiple kernel k−means clustering with (KC, KG, KM)

NMI
0.2557
0.2431
0.1013

Purity
0.8676
0.8480
0.8971

RI
0.6141
0.6233
0.5666

158 patients 46 patients

Algorithm:
Clusters:

MSI high:
Hypermutation:
BRAF mutation:

Localized multiple kernel k−means clustering with (KC, KG, KM)

NMI
0.3954
0.3788
0.1481

Purity
0.8873
0.8873
0.8971

RI
0.8088
0.8088
0.7114

Figure 2: Results obtained by seven clustering algorithms on the colon and rectal cancer data set
provided by TCGA consortium (The Cancer Genome Atlas Network, 2012). For each algorithm, we
first display the cluster assignment and report the number of patients in each cluster. We then display
the values of three clinical biomarkers aligned with the cluster assignment, where “MSI high” shows
the patients with high micro-satellite instability status in darker color, “Hypermutation” shows the
patients with mutations in more than or equal to 300 genes in darker color, and “BRAF mutation”
shows the patients with a mutation in their BRAF gene in darker color. We compare the algorithms
in terms of their clustering performance on three clinical biomarkers under three metrics: normalized
mutual information (NMI), purity, and the Rand index (RI). For all performance metrics, a higher
value means better performance, and for each biomarker–metric pair, the best result is reported in
bold face. We see that our localized clustering algorithm obtains the best result for eight out of nine
biomarker–metric pairs, whereas all algorithms have the same purity value for BRAF mutation.
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Copy number Gene expression Methylation Clusters Mutation

Figure 3: Important features in genomic views determined using the solution of multiple kernel
k-means clustering together with cluster assignment and mutations in frequently mutated genes.
For each genomic view, we calculate the Pearson correlation values between features and clustering
assignment, and display topmost 100 positively correlated and bottommost 100 negatively correlated
features (red: high, blue: low). We also display the mutation status (black: mutated, white: wild-
type) of patients for 102 most frequently mutated genes, which are mutated in at least 16 patients.

Copy number Gene expression Methylation Clusters Mutation

Figure 4: Important features in genomic views determined using the solution of localized multiple
kernel k-means clustering together with cluster assignment and mutations in frequently mutated
genes. See Figure 3 for details.

We perform an additional biological interpretation step by looking at the features that can be used
to differentiate the clusters found. Figures 3 and 4 show features in genomic views that are highly
(positively or negatively) correlated with the cluster assignments of the two best performing algo-
rithms in terms of clustering performance, namely, multiple kernel k-means clustering and localized
multiple kernel k-means clustering. We clearly see that the genomic signatures of the hyper-mutated
cluster (especially the one for DNA copy number) obtained using our localized data fusion approach
are much less noisy than those of global data fusion. Identifying clear genomic signatures are clini-
cally important because they can be used for diagnostic and prognostic purposes on new patients.

6 Discussion

We introduce a localized data fusion approach for kernel k-means clustering to better capture
sample-specific characteristics of the data in the multiview setting, which can not be captured using
global data fusion strategies such as Huang et al. (2012) and Yu et al. (2012). The proposed method
is from the family of MKL algorithms and combines the kernels defined on the views with sample-
specific weights to determine the relative importance of the views for each sample. We illustrate the
practical importance of the method on a human colon and rectal cancer data set by clustering patients
using their three different genomic characterizations. The results show that our localized data fusion
strategy can identify more relevant prognostic patient groups than global data fusion strategies.

The interesting topics for future research are: (i) exploiting the special structure of the Hessian
matrix in our formulation by developing a customized solver instead of using an off-the-shelf op-
timization software to improve the time complexity, and (ii) integrating prior knowledge about the
samples that we may have into our formulation to be able to find more relevant clusters.
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