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Abstract. Multiple kernel learning (Mkl) uses a convex combination
of kernels where the weight of each kernel is optimized during training.
However, Mkl assigns the same weight to a kernel over the whole in-
put space. Localized multiple kernel learning (Lmkl) framework extends
the Mkl framework to allow combining kernels with different weights
in different regions of the input space by using a gating model. Lmkl
extracts the relative importance of kernels in each region whereas Mkl
gives their relative importance over the whole input space. In this paper,
we generalize the Lmkl framework with a kernel-based gating model and
derive the learning algorithm for binary classification. Empirical results
on toy classification problems are used to illustrate the algorithm. Ex-
periments on two bioinformatics data sets are performed to show that
kernel machines can also be localized in a data-dependent way by using
kernel values as gating model features. The localized variant achieves
significantly higher accuracy on one of the bioinformatics data sets.

1 Introduction

In recent studies, different methods have been proposed for combining multi-
ple kernels, instead of selecting a single one. The simplest approach is to use
an unweighted sum of kernels [1]. This gives equal importance to each kernel
and using a weighted sum (e.g., convex combination) is more reasonable. These
weights also allows estimating the importance of kernels. The multiple kernel
learning (Mkl) framework [2, 3] uses an unweighted summation of discriminant
values in different feature spaces which corresponds to a weighted summation of
kernel values:

f(x) =

p∑
m=1

〈wm, Φm(x)〉+ b

where m indexes kernels, wm is the weight coefficients, Φm(x) is the mapping
function for feature space m, and p is the number of kernels. After eliminating
wm from the model by using the duality conditions (see [3]), the discriminant



function becomes:

f(x) =

p∑
m=1

ηm

n∑
i=1

αiyi 〈Φm(xi), Φm(x)〉︸ ︷︷ ︸
Km(xi,x)

+b

where the kernel weights satisfy ηm ≥ 0 and
∑p

m=1 ηm = 1.
Using a fixed combination rule (unweighted or weighted) has the disadvan-

tage of assigning the same weight to a kernel over the whole input space. If kernel
weights can be assigned in a data-dependent way by considering the underlying
localities in training data, a better learner may be produced. Lewis et al. [4] use
a large-margin latent variable generative model for obtaining a nonstationary
combination of kernels. Lee et al. [5] combine Gaussian kernels with different
width parameters by forming a compositional kernel matrix to select suitable
width for different regions of the input space. Gönen and Alpaydın [6] describe
the localized multiple kernel learning (Lmkl) framework which divides the in-
put space into regions by using a parametric gating model and assigns higher
combination weights to kernels which are suitable for each region.

In Sect. 2, we give a brief summary of the Lmkl framework for binary classi-
fication problems [6] and then generalize it with a kernel-based gating model. We
describe a generalized algorithm with a two-step alternate optimization method
for hyperplane-based kernel machines using the localized kernel idea. Then in
Sect. 3, we describe our experimental procedure and list our empirical results
on toy and bioinformatics data sets. We summarize the results and conclude in
Sect. 4.

2 Multiple Kernel Machines Using Localized Kernels

In this section, we give the derivations of localized kernel machines for binary
classification. We describe the parametric gating model and also explain how
we can use this model for non-vectorial data where we have the kernels but not
necessarily a vectorial input. Then, we give the two-step alternate optimization
method to train localized kernel machines.

2.1 Binary Classification

The Lmkl framework divides the input space into regions and assigns combina-
tion weights to kernels in a data-dependent way. The discriminant function for
binary classification is rewritten as:

fC(x) =

p∑
m=1

ηm(x|V )〈wm, Φm(x)〉+ b (1)

where ηm(x|V ) is a parametric gating model which assigns a weight to feature
space m as a function of the input x. Note that it is not required to use different



feature spaces, we can also use multiple copies of the same feature space in order
to obtain a more complex discriminant function. For example, later on we will
discuss using multiple linear kernels to define a piecewise linear boundary. By
using (1) and regularizing the discriminant coefficients of all the feature spaces
together, Lmkl obtains the following optimization problem:

min
1

2

p∑
m=1

‖wm‖2 + C

n∑
i=1

ξi

w.r.t. wm, b, ξ,V

s.t. yifC(xi) ≥ 1− ξi ∀i
ξi ≥ 0 ∀i (2)

where C is the regularization parameter, ξ are the slack variables and V are the
gating model parameters. The optimization problem in (2) is not convex due
to the nonlinearity formed by using the gating model outputs in the separation
constraints.

Suppose we know the gating model parameters, then, the model becomes
convex and we can write the Lagrangian of the primal problem as:

LC =
1

2

p∑
m=1

‖wm‖2 + C

n∑
i=1

ξi −
n∑

i=1

αi (yifC(xi)− 1 + ξi)−
n∑

i=1

βiξi

and taking the derivatives of LC with respect to the primal variables gives:

∂LC

∂wm
⇒ wm =

n∑
i=1

αiyiηm(xi|V )Φm(xi) ∀m

∂LC

∂b
⇒

n∑
i=1

αiyi = 0

∂LC

∂ξi
⇒ C = αi + βi ∀i . (3)

From LC and (3), the dual formulation is obtained as:

max

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjKη(xi,xj)

w.r.t. α

s.t.

n∑
i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i (4)

where the locally combined kernel matrix is defined as:

Kη(xi,xj) =

p∑
m=1

ηm(xi|V )Km(xi,xj)ηm(xj |V ) .



By using the gating model parameters and the support vector coefficients
obtained from (4), we obtain the following discriminant function:

fC(x) =

n∑
i=1

αiyiKη(xi,x) + b .

2.2 Gating Models

For gating, we can use different models for assigning kernel weights in a data-
dependent way. Generally, we want to obtain sparse (with very few non-zero
values) gating outputs for each data instance. This is usually achieved by using
the softmax function at the output.

ηm(x|V ) =
exp(〈vm, ΦG(x)〉+ vm0)
p∑

k=1

exp(〈vk, ΦG(x)〉+ vk0)

where V = {v1, v10,v2, v20, . . . ,vp, vp0} and there are p(dG + 1) parameters
where dG is the dimensionality of the gating feature space.

Gönen and Alpaydın [6] use a linear gating model which divides the input
space into regions with linear boundaries. This corresponds to using x as ΦG(x)
in the gating model. If the linear gating model is not adequate for the problem at
hand, we can use a more complex gating model by extracting additional features
from the original features. For example, we can obtain quadratic boundaries
for the gating model by concatenating the second order terms of the original
features.

In some application areas such as bioinformatics, x vectors may appear in a
non-vectorial format such as sequences, trees and graphs. In such a case where
we can calculate Km matrices but can not represent the data instances as x
vectors, directly, we may define ΦG(x) in terms of the kernel matrices:

ΦG(x) = [KG(x1,x) KG(x2,x) . . . KG(xn,x)]T

where the gating kernel, KG , can be one of the combined kernels K1,K2, . . . ,Kp,
a combination of them, or a completely different kernel used only for determin-
ing the gating boundaries. This gating model has number of parameters in the
order of training instances and is not affected by the curse of dimensionality.
This model has an advantage, if we have fewer training instances than their
dimensionality (which is typically the case in bioinformatics and biometrics ap-
plications).

2.3 Training with Alternate Optimization

We can not perform the joint-optimization of the support vector coefficients and
gating model parameters in (2), efficiently due to non-convexity. Lmkl uses a
two-step alternate optimization procedure in order to solve (2), as also used



for obtaining ηm parameters of Mkl in a previous study [7]. This procedure
consists of two basic steps: (a) solving the model with a fixed gating model and
(b) updating the gating model parameters with the gradients calculated from
the current solution.

Due to strong convexity, for a given V , the gradients of the objective function
in (2) is equal to the gradients of the objective function in (4). These gradients
are found as:

∂Jη

∂vm
= −1

2

n∑
i=1

n∑
j=1

p∑
k=1

αiαjyiyjηk(xi|V )Kk(xi,xj)ηk(xj |V )

(
ΦG(xi)

[
δkm − ηm(xi|V )

]
+ ΦG(xj)

[
δkm − ηm(xj |V )

])
∂Jη

∂vm0
= −1

2

n∑
i=1

n∑
j=1

p∑
k=1

αiαjyiyjηk(xi|V )Kk(xi,xj)ηk(xj |V )

(
δkm − ηm(xi|V ) + δkm − ηm(xj |V )

)
where δkm is 1 if m = k and 0 otherwise. These gradients are used to update the
gating model parameters at each step.

The complete algorithm for training localized kernel machines is summarized
in Algorithm 1. Step size, µ, is optimized using Armijo’s rule and this guarantees
to get a better objective value than the previous one at each step. Note however
that this does not mean that we obtain the global optimum as a result of this
procedure. We can get stuck at a local optimum and the starting point (i.e.,
initial gating model) may affect the solution quality.

Algorithm 1 Multiple Kernel Machines using Localized Kernels

1: Initialize V to small random numbers
2: repeat
3: Calculate Kη(xi,xj) using V
4: Solve kernel machine with Kη(xi,xj)
5: Determine µ using Armijo’s rule

6: V ⇐ V − µ
∂Jη

∂V
7: until convergence

Any kernel machine which has a hyperplane-based decision function can also
be localized by replacing 〈w, Φ(x)〉 with

∑p
m=1 ηm(x|V )〈wm, Φm(x)〉 and de-

riving the corresponding update rules.

3 Experiments

We implement Algorithm 1 in C++ and solve the optimization problems for
canonical kernel machines with MOSEK optimization software [8]. We perform



experiments as follows: For a given data set, we select one-third randomly as
the test set and generate ten training and validation sets from the remaining
two-thirds by using 5 × 2 cross-validation (with stratification for classification
problems). The validation sets are used to select the best C from the set {0.01,
0.1, 1, 10, 100}. The configuration which has the highest average validation
performance is trained on ten different training folds and the performance is
measured over the test set. We have ten test set results for each data set. Linear
(KL) and polynomial (KP ) kernels are used on toy data sets:

KL(xi,xj) = 〈xi,xj〉
KP (xi,xj) = (〈xi,xj〉+ 1)q .

All kernel matrices are calculated and normalized to unit trace before training
for classification problems.

3.1 Toy Classification Data Sets

In order to illustrate the method on binary classification problems, we use the
toy data set named Gauss4 which is taken from Gönen and Alpaydın [6] which
consists of 1200 data instances generated from four Gaussian components (two
for each class) with the following proportions, mean vectors and covariance ma-
trices:

p11 = 0.25 µ11 =

(
−3.0
+1.0

)
Σ11 =

(
0.8 0.0
0.0 2.0

)
p12 = 0.25 µ12 =

(
+1.0
+1.0

)
Σ12 =

(
0.8 0.0
0.0 2.0

)
p21 = 0.25 µ21 =

(
−1.0
−2.2

)
Σ21 =

(
0.8 0.0
0.0 4.0

)
p22 = 0.25 µ22 =

(
+3.0
−2.2

)
Σ22 =

(
0.8 0.0
0.0 4.0

)
where data instances from the first three components are of class 1 (labeled as
positive) and others are of class 2 (labeled as negative). Figure 1 shows the clas-
sification boundaries and the support vectors selected in these experiments. We
train Mkl with (KL-KP ) and Lmkl for the following combinations: (KL-KP )
with linear gating, (KP -KP ) with linear gating, and (KL-KL) with quadratic
gating. For the quadratic gating model, we simply add the second order terms
of the original features in ΦG(x) and we use second order (q = 2) polynomial
kernel as KP .

The complexity of the obtained classification boundaries are controlled by
two main factors: (i) the complexity of combined kernels and (ii) the gating
model complexity. For example, (KL-KP ) with linear gating and (KL-KL) with
quadratic gating produce similar approximations of the optimal Bayes’ boundary
(Fig. 1(b), (c)). If we use simple kernels such as the linear kernel in combination,
we may need a more complex gating model to obtain good boundaries.
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(a) Mkl (KL-KP ) (Acc.:90.95 SV:38.23)
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(b) Lmkl (KL-KP ) (Acc.:91.78 SV:25.20)
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(c) Lmkl (KP -KP ) (Acc.:91.60 SV:31.85)
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(d) Lmkl (KL-KL) (Acc.:91.63 SV:21.98)

Fig. 1. Fitted functions (solid lines) and support vectors (bold points) on Gauss4 data
set. Dashed lines show the Gaussians from which data are sampled and the optimal
Bayes’ discriminant. The thick dashed lines show the gating boundaries (where ηi(x) =
ηj(x) and i, j are neighboring kernels) and the thick lines show the learned class
boundaries. Test accuracies and stored support vector percentages are given. Note
that the softmax function allows a smooth transition between regions.

Selecting the best kernel function for a given data set is generally performed
by using a statistical cross-validation procedure. Modifying kernel combination
rule with a localized kernel has the advantage of choosing the required complexity
automatically for the task at hand. For example, Fig. 2 shows the average testing
errors and support vector percentages of Lmkl with multiple copies of the linear
kernel on Gauss4, we have similar error rates after 3 components which gives the
underlying complexity of this classification problem. Lmkl uses 3 linear kernels
actively by assigning zero gating outputs to some of the kernels with the help of
the softmax function. It also stores nearly the same number of support vectors
after this point. This indicates that even if we start with more kernels than
necessary, Lmkl automatically regularizes and does not overfit. Regularizing
wm terms given in (3) also enforces using fewer non-zero gating outputs as well
as fewer support vectors.
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Fig. 2. The average testing errors and support vector percentages with p = 1, . . . , 10
linear kernels on Gauss4 data set.

3.2 Bioinformatics Data Sets

We perform protein location prediction experiments on the MIPS Comprehensive
Yeast Genome Database (CYGD) [9]. CYGD assigns subcellular locations for
2318 and 1150 proteins according to whether they participate in the membrane
and the ribosome, respectively. For this problem, we have different similarity
measures between proteins but we do not have the exact vectorial representations
of data instances. In order to learn the gating model, pairwise function values of
one kernel is fed into the gating model as features. In the experiments, we use
the three kernel functions in Table 1. The results of single-kernel Svms, Mkl
and Lmkl using each kernel alone in the gating model are given in Table 2.

Table 1. Kernels used for protein location prediction problem from [10].

Kernel Explanation

K1 Gaussian kernel calculated from gene expression
K2 Linear kernel calculated from protein interactions
K3 Smith-Waterman kernel calculated from protein sequences

On Membrane, Lmkl with K2 or K3 used in the gating model achieves sig-
nificantly higher accuracy than Mkl and single-kernel Svms. All Lmkl variants,
Mkl and single-kernel Svms achieve comparable accuracies on Ribosomal. In
Table 3, the weights found by Mkl for the three kernels are given; we see that
on Membrane, Mkl uses K1 and K3; on Ribosomal, it heavily uses K1. In
the same table, we also report the sum of ηm(x),m = 1, 2, 3 of the support
vectors normalized by dividing by the number of support vectors. We see that
on Membrane, Lmkl uses K2 and K3; on Ribosomal, with K1 or K3 in the
gating model, Lmkl also uses K1 heavily; otherwise, it tends to use all three.
This indicates that Lmkl also allows knowledge extraction in that we can see



Table 2. The average testing accuracies and support vector percentages of single-kernel
Svm, Mkl and Lmkl with the kernel-based gating model on protein location prediction
experiments using (K1-K2-K3) combination. An underlined entry means that Lmkl is
significantly better than single-kernel Svms and Mkl.

Svm Mkl Lmkl
K1 K2 K3 K1 K2 K3

Acc. SV Acc. SV Acc. SV Acc. SV Acc. SV Acc. SV Acc. SV

M 84.79 72.93 81.19 86.67 78.94 75.29 84.68 77.24 84.49 74.42 86.07 73.81 85.34 83.21
R 95.26 46.21 92.16 81.41 98.70 17.96 98.70 18.17 98.65 36.97 97.19 24.62 98.46 30.22

which kernel returns the most useful similarity metric for which part of the input
space.

Table 3. The average weights assigned to kernels by Mkl and Lmkl with the kernel-
based gating model on protein location prediction experiments using (K1-K2-K3) com-
bination.

Mkl Lmkl
K1 K2 K3

(η1-η2-η3) (η1-η2-η3) (η1-η2-η3) (η1-η2-η3)

Membrane 0.25-0.02-0.73 0.09-0.42-0.49 0.00-0.66-0.34 0.17-0.41-0.42
Ribosomal 0.96-0.02-0.01 0.97-0.03-0.00 0.38-0.27-0.35 0.99-0.01-0.00

4 Conclusion

We generalize the localized multiple kernel learning framework with a kernel-
based gating model and give the learning algorithm for binary classification. This
framework also allows us to determine the model complexity at the combination
level instead of performing statistical cross-validation. The algorithm for binary
classification is illustrated on toy data sets.

Localized kernel machines are tested on two bioinformatics data sets and
we use kernel values as gating model features in these experiments. We achieve
significantly higher accuracy on one of the bioinformatics data sets by combining
kernels in a data-dependent way.
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