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Abstract. Images usually convey information that can influence peo-
ple’s emotional states. Such affective information can be used by search
engines and social networks for better understanding the user’s pref-
erences. We propose here a novel Bayesian multiple kernel learning
method for predicting the emotions evoked by images. The proposed
method can make use of different image features simultaneously to ob-
tain a better prediction performance, with the advantage of automat-
ically selecting important features. Specifically, our method has been
implemented within a multilabel setup in order to capture the correla-
tions between emotions. Due to its probabilistic nature, our method is
also able to produce probabilistic outputs for measuring a distribution
of emotional intensities. The experimental results on the International
Affective Picture System (IAPS) dataset show that the proposed
approach achieves a bette classification performance and provides a
more interpretable feature selection capability than the state-of-the-art
methods.

Keywords: Image emotion, low-level image features, multiview learn-
ing, multiple kernel learning, variational approximation.

1 Introduction

Affective computing [11] aims to help people communicate, understand, and
respond better to affective information such as audio, image, and video in a way
that takes into account the user’s emotional states. Affective image classification
has attracted increasing research attention in recent years, due to the rapid
expansion of the digital visual libraries on the Web. In analogy to the concept of
“semantic gap” that implies the limitations of image recognition techniques, the
“affective gap” can be defined as “the lack of coincidence between the measurable
signal properties, commonly referred to as features, and the expected affective
state in which the user is brought by perceiving the signal” [5].

The previous research (e.g., [9,8,13]) has focused on designing features that are
specific to image affect detection, after which a general-purpose classifier such as
SVM [3] is used to project an image to a certain emotional category. However, the
most suitable feature representation or subset related to people’s emotions is not
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known a priori, and feature selection has to be done first for a better prediction
performance in final predictions, which increases the computational complexity.
Besides, an image often evokes mixed feelings in people rather than a single one,
and the ground-truth labels or emotions usually conceptually correlate with each
other in the affective space. In such cases, it makes more sense to assign an image
several emotional labels than a single one.

In this paper, we propose a novel Bayesian Multiple Kernel Learning (MKL)
method for affective image classification using low-level color, shape and texture
image features. An image can be represented by different feature representations
or views. MKL combines kernels calculated on different views to obtain a better
prediction performance than single-view learning methods (see [4] for a recent
survey). Thanks to the MKL framework, our method can learn the image feature
representation weights by itself without an explicit feature selection step, which
makes the interpretation easy and straightforward. Our method has been imple-
mented within a multilabel setup in order to capture the correlations between
emotions. Due to its probabilistic nature, our method is able to produce prob-
abilistic outputs to reflect a distribution of emotional intensities for an image.
The experimental results on the International Affective Picture System

(IAPS) dataset show that the proposed Bayesian MKL approach outperforms
the state-of-the-art methods in terms of classification performance, feature se-
lection, and result interpretation.

Section 2 introduces the image features used in this paper. Section 3 gives the
mathematical details of the proposed method. In Section 4, the experimental
results on affective image classification are reported. Finally, the conclusions
and future work are presented in Section 5.

2 Image Features

We have used a set of ten low-level color, shape, and texture features to represent
each image. The features are extracted both globally and locally. Note that the
features calculated for five zones employ a tiling mask, where the image area
is divided into four tiles by the two diagonals of the image, on top of which a
circular center tile is overlaid [12]. Table 1 gives a summary of these features.
All the features are extracted using PicSOM system [6].

Four of the features are standard MPEG-7 descriptors: Scalable Color, Dom-
inant Color, Color Layout, and Edge Histogram. 5Zone-Color is defined as the
average RGB values of all the pixels within the zone. 5Zone-Colm denotes the
three central moments of HSV color distribution. Edge Fourier is calculated as
the magnitude of the 16 × 16 FFT of Sobel edge image. 5Zone-Edgehist is the
histogram of four Sobel edge directions. 5Zone-Edgecoocc is the co-occurrence
matrix of four Sobel edge directions. Finally, 5Zone-Texture is defined as the
histogram of relative brightness of neighboring pixels.
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Table 1. The set of low-level image features used

Index Feature Type Zoning Dims.

F1 Scalable Color Color Global 256

F2 Dominant Color Color Global 6

F3 Color Layout Color 8× 8 12

F4 5Zone-Color Color 5 15

F5 5Zone-Colm Color 5 45

F6 Edge Histogram Shape 4× 4 80

F7 Edge Fourier Shape Global 128

F8 5Zone-Edgehist Shape 5 20

F9 5Zone-Edgecoocc Shape 5 80

F10 5Zone-Texture Texture 5 40

3 Methods

In order to benefit from the correlation between the class labels in a multil-
abel learning scenario, we assume a common set of kernel weights and perform
classification for all labels with these weights but using a distinct set of classifi-
cation parameters for each label. This approach can also be interpreted as using
a common similarity measure by sharing the kernel weights between the labels.

The notation we use throughout the manuscript is given in Table 2. The
superscripts index the rows of matrices, whereas the subscripts index the columns
of matrices and the entries of vectors.N (·;μ,Σ) denotes the normal distribution
with the mean vector μ and the covariance matrix Σ. G(·;α, β) denotes the
gamma distribution with the shape parameter α and the scale parameter β. δ(·)
denotes the Kronecker delta function that returns 1 if its argument is true and
0 otherwise.

Figure 1 illustrates the proposed probabilistic model for multilabel binary
classification with a graphical model. The kernel matrices {K1, . . . ,KP } are
used to calculate intermediate outputs using the weight matrix A. The interme-
diate outputs {G1, . . . ,GL}, kernel weights e, and bias parameters b are used
to calculate the classification scores. Finally, the given class labels Y are gen-
erated from the auxiliary matrix F, which is introduced to make the inference
procedures efficient [1]. We formulated a variational approximation procedure
for inference in order to have a computationally efficient algorithm.

The distributional assumptions of our proposed model are defined as
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where the margin parameter ν is introduced to resolve the scaling ambiguity is-
sue and to place a low-density region between two classes, similar to the margin
idea in SVMs, which is generally used for semi-supervised learning [7]. As short-
hand notations, all priors in the model are denoted by Ξ = {γ,Λ,ω}, where the
remaining variables by Θ = {A, b, e,F,G1, . . . ,GL} and the hyper-parameters
by ζ = {αγ , βγ , αλ, βλ, αω, βω}. Dependence on ζ is omitted for clarity through-

Table 2. List of notation

N Number of training instances

P Number of kernels

L Number of output labels

{K1, . . . ,KP } ∈ R
N×N Kernel matrices

A ∈ R
N×L Weight matrix

Λ ∈ R
N×L Priors for weight matrix

{G1, . . . ,GL} ∈ R
P×N Intermediate outputs

e ∈ R
P Kernel weight vector

ω ∈ R
P Priors for kernel weight vector

b ∈ R
L Bias vector

γ ∈ R
L Priors for bias vector

F ∈ R
L×N Auxiliary matrix

Y ∈ {±1}L×N Label matrix

Λ Km

A Go

e F b

ω Y γ

P

L

Fig. 1. Graphical model for Bayesian multilabel multiple kernel learning
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out the manuscript. The variational methods use a lower bound on the marginal
likelihood using an ensemble of factored posteriors to find the joint parame-
ter distribution [2]. We can write the factorable ensemble approximation of the
required posterior as

p(Θ,Ξ|{Km}Pm=1,Y) ≈ q(Θ,Ξ) =

q(Λ)q(A)q(Z)q({Go}Lo=1)q(γ)q(ω)q(b, e)q(F)

and define each factor in the ensemble just like its full conditional distribution.
We can bound the marginal likelihood using Jensen’s inequality:

log p(Y|{Km}Pm=1) ≥
Eq(Θ,Ξ)[log p(Y,Θ,Ξ|{Km}Pm=1)]− Eq(Θ,Ξ)[log q(Θ,Ξ)]

and optimize this bound by optimizing with respect to each factor separately
until convergence. The approximate posterior distribution of a specific factor τ
can be found as

q(τ ) ∝ exp
(
Eq({Θ,Ξ}\τ )[log p(Y,Θ,Ξ|{Km}Pm=1)]

)
.

For our model, thanks to the conjugacy, the resulting approximate posterior
distribution of each factor follows the same distribution as the corresponding
factor. The exact inference details are omitted due to the space limit.

4 Experiments

In this section, we present the experimental results using our proposed Bayesian
MKL method for affective image classification. We implemented our method in
Matlab and took 200 variational iterations for inference with non-informative pri-
ors. We calculated the standard Gaussian kernel on each feature representation
separately and picked the kernel width as 2

√
Dm, where Dm is the dimension-

ality of corresponding feature representation.

4.1 Dataset and Comparison Methods

The IAPS dataset is a widely-used stimulus set in emotion-related studies. It
contains altogether 1182 color images that cover contents across a large vari-
ety of semantic categories. A subset of 394 IAPS images have been grouped
into 8 discrete emotional categories based on a psychophysical study [10], in-
cluding Amusement, Awe, Contentment, Excitement, Anger, Disgust, Fear and
Sad(ness). The ground truth label for each image was selected as the category
that had majority of the votes. Both Machajdik et al. [9] and Lu et al. [8] used
this subset for image emotion classification, hence we used it to compare with
their results in [9,8].
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4.2 Experimental Setup

We used the same training and testing procedure (80% samples for training, 20%
for testing) as in [9,8]: we ran 5-fold Cross-Validation (CV) and calculated the
average classification accuracy. As a baseline method, the standard SVM (with
Gaussian kernel and 5-fold CV) was also implemented for comparison, where
each feature was taken separately for training a single classifier.

4.3 Results

Figure 2 shows the classification results. It is clear to see that our proposed
approach is the best among the three. With rather generic low-level image fea-
tures, our classifier can achieve very good classification performance. Note that
the compared methods [9,8] utilize complicated domain-specific features.
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Fig. 2. The classification results of the compared methods

To further demonstrate the advantage of multiple kernel (multiview) learning
over single kernel (single-view) learning, we trained and tested a single SVM
classifier using each of the 10 features separately (with the same partition as
MKL setup). Table 3 lists the classification accuracies. The best SVM classifier
(trained with Dominant Color) can only achieve an accuracy of 0.22, which is
about 9 percent lower than that of our method. And an SVM using all 10 features
can give an accuracy of 0.25. This demonstrates the advantage of multiview
learning over single-view learning. It also validates the strength of our proposed
classifier in terms of mapping low-level image features to high-level emotional
responses.

Another advantage of our MKL method is that it can select features auto-
matically without explicit feature extraction and selection procedures. Figure 3
shows the average feature representation weights (i.e., kernel weights) in the
range [0, 1] based on 5-fold CV for the multiple kernel learning scenario. We
clearly see that, among the ten image feature representations, Edge Histogram
(F6) ranks first, followed by Scalable Color (F1), 5Zone-Colm (F5), and Edge
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Table 3. The image features ranked by SVM classification accuracies

Rank Feature Accuracy

1 Dominant Color 0.22

2 Color Layout 0.22

3 Edge Fourier 0.22

4 5Zone-Texture 0.21

5 5Zone-Colm 0.21

6 Scalable Color 0.20

7 5Zone-Color 0.20

8 5Zone-Edgecoocc 0.20

9 5Zone-Edgehist 0.19

10 Edge Histogram 0.18

Fourier (F7) etc. This reveals that colors and edges of an image are the most
informative features for emotions recognition, which is in agreement with the
studies in [9] and [8]. This also shows that multiple kernel learning helps to iden-
tify the relative importances of feature representations using a common set of
kernel weights.

It is worth emphasizing that an image can evoke mixed emotions instead
of a single emotion. Our Bayesian classifier is capable of producing multiple
probabilistic outputs simultaneously for an image, which allows us to give the
image a “soft” class assignment instead of a “hard” one. This characteristic
is particularly useful for detecting emotion distribution evoked by an image.
Figure 4 gives some examples. One can see that the probabilistic outputs of our
Bayesian classifier generally agree well with the real human votes for certain
images.
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Fig. 3. The average feature representation weights over 5-fold cross-validation for the
multilabel multiple kernel learning scenario
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Fig. 4. The agreement of image emotion distribution between our predicted results
(green bars) and the normalized human votes (yellow bars). The x-axis shows positive
emotions ((a) & (b)): Amusement, Awe, Contentment, Excitement, and negative emo-
tions ((c) & (d)) Anger, Disgust, Fear, Sad. The y-axis shows the agreement in the
range [0, 1].

5 Conclusions

In this paper, we have presented a novel Bayesian multiple kernel learning
method for affective image classification with multiple outputs and feature repre-
sentations. Instead of single feature (view) representation, our method adopts a
kernel-based multiview learning approach for better prediction performance and
interpretation, with the advantage of selecting or ranking features automatically.
To capture the correlations between emotions, our method has been implemented
within a multilabel setup. Due to its probabilistic nature, the proposed approach
is able to produce probabilistic outputs for measuring the intensities of a distri-
bution of emotions evoked by an image. More large-scale emotional datasets will
be tested in the future. It is worth emphasizing that our method is not confined
to the image recognition, but can be easily extended to other affective stimuli
such as audio and video data.
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Currently, only the conventional low-level image features are utilized, as our
focus in this paper is not on the affective feature design. Rather, we would
like to provide a new framework for better predicting people’s emotional states,
especially when an image evokes multiple affective feelings in people. Eventually,
the development in this interdisciplinary area relies on the joint efforts from, for
instance, artificial intelligence, computer vision, pattern recognition, cognitive
science, psychology, and art theory.

Acknowledgements. This work has received funding from the Academy of
Finland in the project Finnish Center of Excellence in Computational Inference
Research (COIN). We gratefully acknowledge the Center for the Study of Emo-
tion & Attention at University of Florida for providing the original IAPS image
dataset.

References

1. Albert, J.H., Chib, S.: Bayesian analysis of binary and polychotomous response
data. Journal of the American Statistical Association 88(422), 669–679 (1993)

2. Beal, M.J.: Variational Algorithms for Approximate Bayesian Inference. Ph.D.
thesis, The Gatsby Computational Neuroscience Unit, University College London
(2003)

3. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297
(1995)

4. Gönen, M., Alpaydın, E.: Multiple kernel learning algorithms. Journal of Machine
Learning Research 12, 2211–2268 (2011)

5. Hanjalic, A.: Extracting moods from pictures and sounds: Towards truly person-
alized TV. IEEE Signal Processing Magazine 23(2), 90–100 (2006)

6. Laaksonen, J., Koskela, M., Oja, E.: PicSOM-self-organizing image retrieval with
MPEG-7 content descriptors. IEEE Transactions on Neural Networks 13(4),
841–853 (2002)

7. Lawrence, N.D., Jordan, M.I.: Semi-supervised learning via Gaussian processes. In:
Advances in Neural Information Processing Systems 17, pp. 753–760 (2005)

8. Lu, X., Suryanarayan, P., Adams Jr., R.B., Li, J., Newman, M.G., Wang, J.Z.:
On shape and the computability of emotions. In: Proceedings of the International
Conference on Multimedia, pp. 229–238 (2012)

9. Machajdik, J., Hanbury, A.: Affective image classification using features inspired
by psychology and art theory. In: Proceedings of the International Conference on
Multimedia, pp. 83–92 (2010)

10. Mikels, J., Fredrickson, B., Larkin, G., Lindberg, C., Maglio, S., Reuter-Lorenz,
P.: Emotional category data on images from the International Affective Picture
System. Behavior Research Methods 37(4), 626–630 (2005)

11. Picard, R.: Affective Computing. MIT Press (1997)
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